CuO-TiO2纳米管阵列电混凝光催化同时脱色酒黄石和制氢:文献综述和实验

Q1 Earth and Planetary Sciences
S. Slamet, Laily F. Pelawi, M. Ibadurrohman, R. Yudianti, R. Ratnawati
{"title":"CuO-TiO2纳米管阵列电混凝光催化同时脱色酒黄石和制氢:文献综述和实验","authors":"S. Slamet, Laily F. Pelawi, M. Ibadurrohman, R. Yudianti, R. Ratnawati","doi":"10.17509/ijost.v7i3.51315","DOIUrl":null,"url":null,"abstract":"We reported the simultaneous decolorization of tartrazine and H2 production via electrocoagulation and photocatalysis using CuO-doped TiO2 nanotube arrays (TNTA) composites. Tartrazine was removed by the combination of adsorption, electrocoagulation, and photocatalytic degradation, while H2 was produced through water reduction at the cathode and water splitting process on the photocatalyst surface. The photoreactor contains CuO-TNTA as a photocatalyst and is equipped with an 80-W UV lamp. Deposition of CuO on TNTA was conducted using a successive ionic layer adsorption and reaction (SILAR) method. The nanotubular of the TNTA as well as the distribution of CuO were evaluated employing FESEM and HRTEM. XRD patterns confirmed weak diffraction of CuO and TNTA revealing an anatase crystallite phase. The band gap of the CuO-TNTA was also found to be redshifted from that of pure TNTA. The simultaneous processes with the combined systems (20 V, pH = 11) managed to remove 80% of tartrazine while producing a high H2 yield (1.84 mmol), significantly higher than those obtained by each process.","PeriodicalId":37185,"journal":{"name":"Indonesian Journal of Science and Technology","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Simultaneous Decolorization of Tartrazine and Production of H2 in a Combined Electrocoagulation and Photocatalytic Processes using CuO-TiO2 Nanotube Arrays: Literature Review and Experiment\",\"authors\":\"S. Slamet, Laily F. Pelawi, M. Ibadurrohman, R. Yudianti, R. Ratnawati\",\"doi\":\"10.17509/ijost.v7i3.51315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We reported the simultaneous decolorization of tartrazine and H2 production via electrocoagulation and photocatalysis using CuO-doped TiO2 nanotube arrays (TNTA) composites. Tartrazine was removed by the combination of adsorption, electrocoagulation, and photocatalytic degradation, while H2 was produced through water reduction at the cathode and water splitting process on the photocatalyst surface. The photoreactor contains CuO-TNTA as a photocatalyst and is equipped with an 80-W UV lamp. Deposition of CuO on TNTA was conducted using a successive ionic layer adsorption and reaction (SILAR) method. The nanotubular of the TNTA as well as the distribution of CuO were evaluated employing FESEM and HRTEM. XRD patterns confirmed weak diffraction of CuO and TNTA revealing an anatase crystallite phase. The band gap of the CuO-TNTA was also found to be redshifted from that of pure TNTA. The simultaneous processes with the combined systems (20 V, pH = 11) managed to remove 80% of tartrazine while producing a high H2 yield (1.84 mmol), significantly higher than those obtained by each process.\",\"PeriodicalId\":37185,\"journal\":{\"name\":\"Indonesian Journal of Science and Technology\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17509/ijost.v7i3.51315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17509/ijost.v7i3.51315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 1

摘要

我们报道了利用掺杂cuo的TiO2纳米管阵列(TNTA)复合材料通过电凝和光催化同时脱色酒黄和产氢。通过吸附、电絮凝、光催化降解联合去除酒黄,通过阴极水还原、光催化剂表面水裂解制备H2。该光反应器以CuO-TNTA为光催化剂,并配有80 w紫外灯。采用连续离子层吸附反应(SILAR)法在TNTA上沉积CuO。利用FESEM和HRTEM对TNTA的纳米管结构和CuO的分布进行了表征。XRD谱图证实了CuO和TNTA的弱衍射,显示出锐钛矿晶相。与纯TNTA相比,CuO-TNTA的带隙也发生了红移。组合体系(20 V, pH = 11)同时处理时,酒石黄的去除率为80%,H2产率为1.84 mmol,显著高于单独处理的H2产率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simultaneous Decolorization of Tartrazine and Production of H2 in a Combined Electrocoagulation and Photocatalytic Processes using CuO-TiO2 Nanotube Arrays: Literature Review and Experiment
We reported the simultaneous decolorization of tartrazine and H2 production via electrocoagulation and photocatalysis using CuO-doped TiO2 nanotube arrays (TNTA) composites. Tartrazine was removed by the combination of adsorption, electrocoagulation, and photocatalytic degradation, while H2 was produced through water reduction at the cathode and water splitting process on the photocatalyst surface. The photoreactor contains CuO-TNTA as a photocatalyst and is equipped with an 80-W UV lamp. Deposition of CuO on TNTA was conducted using a successive ionic layer adsorption and reaction (SILAR) method. The nanotubular of the TNTA as well as the distribution of CuO were evaluated employing FESEM and HRTEM. XRD patterns confirmed weak diffraction of CuO and TNTA revealing an anatase crystallite phase. The band gap of the CuO-TNTA was also found to be redshifted from that of pure TNTA. The simultaneous processes with the combined systems (20 V, pH = 11) managed to remove 80% of tartrazine while producing a high H2 yield (1.84 mmol), significantly higher than those obtained by each process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Indonesian Journal of Science and Technology
Indonesian Journal of Science and Technology Engineering-Engineering (all)
CiteScore
11.20
自引率
0.00%
发文量
10
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信