{"title":"高效的盆地跳跃在蛋白质能量表面","authors":"Brian S. Olson, Amarda Shehu","doi":"10.1109/BIBM.2012.6392655","DOIUrl":null,"url":null,"abstract":"The vast and rugged protein energy surface can be effectively represented in terms of local minima. The basin-hopping framework, where a structural perturbation is followed by an energy minimization, is particularly suited to obtaining this coarse-grained representation. Basin hopping is effective for small systems both in locating lower-energy minima and obtaining conformations near the native structure. The efficiency decreases for large systems. Our recent work improves efficiency on large systems through molecular fragment replacement. In this paper, we conduct a detailed investigation of two components in basin hopping, perturbation and minimization, and how they work in concert to affect the sampling of near-native local minima. We show that controlling the magnitude of perturbation jumps is related to the ability to effectively steer the exploration towards conformations near the protein native state. In minimization, we show that a simple greedy search is just as effective as Metropolis Monte Carlo-based minimization. Finally, we show that an evolutionary-inspired approach based on the Pareto front is particularly effective in reducing the ensemble of sampled local minima and obtains a simpler representation of the probed energy surface.","PeriodicalId":6392,"journal":{"name":"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Efficient basin hopping in the protein energy surface\",\"authors\":\"Brian S. Olson, Amarda Shehu\",\"doi\":\"10.1109/BIBM.2012.6392655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The vast and rugged protein energy surface can be effectively represented in terms of local minima. The basin-hopping framework, where a structural perturbation is followed by an energy minimization, is particularly suited to obtaining this coarse-grained representation. Basin hopping is effective for small systems both in locating lower-energy minima and obtaining conformations near the native structure. The efficiency decreases for large systems. Our recent work improves efficiency on large systems through molecular fragment replacement. In this paper, we conduct a detailed investigation of two components in basin hopping, perturbation and minimization, and how they work in concert to affect the sampling of near-native local minima. We show that controlling the magnitude of perturbation jumps is related to the ability to effectively steer the exploration towards conformations near the protein native state. In minimization, we show that a simple greedy search is just as effective as Metropolis Monte Carlo-based minimization. Finally, we show that an evolutionary-inspired approach based on the Pareto front is particularly effective in reducing the ensemble of sampled local minima and obtains a simpler representation of the probed energy surface.\",\"PeriodicalId\":6392,\"journal\":{\"name\":\"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2012.6392655\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2012.6392655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient basin hopping in the protein energy surface
The vast and rugged protein energy surface can be effectively represented in terms of local minima. The basin-hopping framework, where a structural perturbation is followed by an energy minimization, is particularly suited to obtaining this coarse-grained representation. Basin hopping is effective for small systems both in locating lower-energy minima and obtaining conformations near the native structure. The efficiency decreases for large systems. Our recent work improves efficiency on large systems through molecular fragment replacement. In this paper, we conduct a detailed investigation of two components in basin hopping, perturbation and minimization, and how they work in concert to affect the sampling of near-native local minima. We show that controlling the magnitude of perturbation jumps is related to the ability to effectively steer the exploration towards conformations near the protein native state. In minimization, we show that a simple greedy search is just as effective as Metropolis Monte Carlo-based minimization. Finally, we show that an evolutionary-inspired approach based on the Pareto front is particularly effective in reducing the ensemble of sampled local minima and obtains a simpler representation of the probed energy surface.