确定性伪退火:一种用于纹理分割的新优化方案

Q4 Computer Science
M. Berthod, Shan Yu, J. Stromboni
{"title":"确定性伪退火:一种用于纹理分割的新优化方案","authors":"M. Berthod, Shan Yu, J. Stromboni","doi":"10.1109/ICPR.1992.201696","DOIUrl":null,"url":null,"abstract":"Proposes deterministic psuedo annealing (DPA), a variation of simulated annealing. The method is an extension of relaxation labeling, a once popular framework for a variety of computer vision problems. The authors present its application to textured image segmentation. The basic idea is to introduce weighted labelings, which assign a weighted combination of labels to any site, and then to build a merit function of all the weighted labels. This function, a polynomial with non-negative coefficients, is an extension to a compact domain of R/sup N/ of an application defined on the finite (but very large) set of labelings; its only extrema under suitable constraints correspond to discrete labelings. DPA consists of changing the constraints, and thus the domain, so as to convexify this function, find its unique global maximum, and then track down the solution until the original constraints are restored, thus obtaining usually good discrete labeling.<<ETX>>","PeriodicalId":34917,"journal":{"name":"模式识别与人工智能","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1992-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Deterministic pseudo-annealing: a new optimization scheme applied to texture segmentation\",\"authors\":\"M. Berthod, Shan Yu, J. Stromboni\",\"doi\":\"10.1109/ICPR.1992.201696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proposes deterministic psuedo annealing (DPA), a variation of simulated annealing. The method is an extension of relaxation labeling, a once popular framework for a variety of computer vision problems. The authors present its application to textured image segmentation. The basic idea is to introduce weighted labelings, which assign a weighted combination of labels to any site, and then to build a merit function of all the weighted labels. This function, a polynomial with non-negative coefficients, is an extension to a compact domain of R/sup N/ of an application defined on the finite (but very large) set of labelings; its only extrema under suitable constraints correspond to discrete labelings. DPA consists of changing the constraints, and thus the domain, so as to convexify this function, find its unique global maximum, and then track down the solution until the original constraints are restored, thus obtaining usually good discrete labeling.<<ETX>>\",\"PeriodicalId\":34917,\"journal\":{\"name\":\"模式识别与人工智能\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"模式识别与人工智能\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.1992.201696\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"模式识别与人工智能","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/ICPR.1992.201696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2

摘要

提出了确定性伪退火(DPA),一种模拟退火的变体。该方法是松弛标记的扩展,松弛标记曾经是各种计算机视觉问题的流行框架。介绍了该方法在纹理图像分割中的应用。其基本思想是引入加权标签,将标签的加权组合分配给任意站点,然后构建所有加权标签的价值函数。这个函数是一个非负系数的多项式,它是在有限(但非常大)标记集上定义的一个应用在R/sup N/紧定义域上的扩展;它在适当约束下的唯一极值对应于离散标记。DPA包括改变约束,从而改变域,从而使该函数凸化,找到其唯一的全局最大值,然后跟踪解,直到恢复原始约束,从而获得通常良好的离散标记。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deterministic pseudo-annealing: a new optimization scheme applied to texture segmentation
Proposes deterministic psuedo annealing (DPA), a variation of simulated annealing. The method is an extension of relaxation labeling, a once popular framework for a variety of computer vision problems. The authors present its application to textured image segmentation. The basic idea is to introduce weighted labelings, which assign a weighted combination of labels to any site, and then to build a merit function of all the weighted labels. This function, a polynomial with non-negative coefficients, is an extension to a compact domain of R/sup N/ of an application defined on the finite (but very large) set of labelings; its only extrema under suitable constraints correspond to discrete labelings. DPA consists of changing the constraints, and thus the domain, so as to convexify this function, find its unique global maximum, and then track down the solution until the original constraints are restored, thus obtaining usually good discrete labeling.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
模式识别与人工智能
模式识别与人工智能 Computer Science-Artificial Intelligence
CiteScore
1.60
自引率
0.00%
发文量
3316
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信