局部精细网格非凸多边形Neumann问题的有限元法的最大范数稳定性

Buyang Li
{"title":"局部精细网格非凸多边形Neumann问题的有限元法的最大范数稳定性","authors":"Buyang Li","doi":"10.1090/mcom/3724","DOIUrl":null,"url":null,"abstract":"The Galerkin finite element solution uh of the Possion equation −∆u = f under the Neumann boundary condition in a possibly nonconvex polygon Ω, with a graded mesh locally refined at the corners of the domain, is shown to satisfy the following maximum-norm stability: ‖uh‖L∞(Ω) ≤ C`h‖u‖L∞(Ω), where `h = ln(2+1/h) for piecewise linear elements and `h = 1 for higher-order elements. As a result of the maximum-norm stability, the following best approximation result holds: ‖u− uh‖L∞(Ω) ≤ C`h‖u− Ihu‖L∞(Ω), where Ih denotes the Lagrange interpolation operator onto the finite element space. For a locally quasi-uniform triangulation sufficiently refined at the corners, the above best approximation property implies the following optimal-order error bound in the maximum norm: ‖u− uh‖L∞(Ω) ≤ { C`hh k+2− 2 p ‖f‖Wk,p(Ω) if r ≥ k + 1, C`hh ‖f‖Hk(Ω) if r = k, where r ≥ 1 is the degree of finite elements, k is any nonnegative integer no larger than r, and p ∈ [2,∞) can be arbitrarily large.","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Maximum-norm stability of the finite element method for the Neumann problem in nonconvex polygons with locally refined mesh\",\"authors\":\"Buyang Li\",\"doi\":\"10.1090/mcom/3724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Galerkin finite element solution uh of the Possion equation −∆u = f under the Neumann boundary condition in a possibly nonconvex polygon Ω, with a graded mesh locally refined at the corners of the domain, is shown to satisfy the following maximum-norm stability: ‖uh‖L∞(Ω) ≤ C`h‖u‖L∞(Ω), where `h = ln(2+1/h) for piecewise linear elements and `h = 1 for higher-order elements. As a result of the maximum-norm stability, the following best approximation result holds: ‖u− uh‖L∞(Ω) ≤ C`h‖u− Ihu‖L∞(Ω), where Ih denotes the Lagrange interpolation operator onto the finite element space. For a locally quasi-uniform triangulation sufficiently refined at the corners, the above best approximation property implies the following optimal-order error bound in the maximum norm: ‖u− uh‖L∞(Ω) ≤ { C`hh k+2− 2 p ‖f‖Wk,p(Ω) if r ≥ k + 1, C`hh ‖f‖Hk(Ω) if r = k, where r ≥ 1 is the degree of finite elements, k is any nonnegative integer no larger than r, and p ∈ [2,∞) can be arbitrarily large.\",\"PeriodicalId\":18301,\"journal\":{\"name\":\"Math. Comput. Model.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Math. Comput. Model.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3724\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Math. Comput. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在可能的非凸多边形Ω中,在Neumann边界条件下Possion方程-∆u = f的Galerkin有限元解uh,在区域的角处局部精化了一个分级网格,显示出满足以下最大范数稳定性:‖uh‖L∞(Ω)≤C’h‖u‖L∞(Ω),其中对于分段线性元素,h = ln(2+1/h),对于高阶元素,h = 1。由于最大范数稳定性,以下最佳逼近结果成立:‖u−uh‖L∞(Ω)≤C’h‖u−Ihu‖L∞(Ω),其中Ih表示有限元空间上的拉格朗日插值算子。对于在边角处充分精化的局部拟均匀三角测量,上述最佳逼近性质意味着在最大范数中有如下最优阶误差界:‖u−uh‖L∞(Ω)≤{C’hh k+2−2 p‖f‖Wk,如果r≥k+ 1,则p(Ω),如果r = k,则C’hh‖f‖Hk(Ω),其中r≥1为有限元度,k为不大于r的任意非负整数,且p∈[2,∞]可以任意大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximum-norm stability of the finite element method for the Neumann problem in nonconvex polygons with locally refined mesh
The Galerkin finite element solution uh of the Possion equation −∆u = f under the Neumann boundary condition in a possibly nonconvex polygon Ω, with a graded mesh locally refined at the corners of the domain, is shown to satisfy the following maximum-norm stability: ‖uh‖L∞(Ω) ≤ C`h‖u‖L∞(Ω), where `h = ln(2+1/h) for piecewise linear elements and `h = 1 for higher-order elements. As a result of the maximum-norm stability, the following best approximation result holds: ‖u− uh‖L∞(Ω) ≤ C`h‖u− Ihu‖L∞(Ω), where Ih denotes the Lagrange interpolation operator onto the finite element space. For a locally quasi-uniform triangulation sufficiently refined at the corners, the above best approximation property implies the following optimal-order error bound in the maximum norm: ‖u− uh‖L∞(Ω) ≤ { C`hh k+2− 2 p ‖f‖Wk,p(Ω) if r ≥ k + 1, C`hh ‖f‖Hk(Ω) if r = k, where r ≥ 1 is the degree of finite elements, k is any nonnegative integer no larger than r, and p ∈ [2,∞) can be arbitrarily large.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信