{"title":"局部精细网格非凸多边形Neumann问题的有限元法的最大范数稳定性","authors":"Buyang Li","doi":"10.1090/mcom/3724","DOIUrl":null,"url":null,"abstract":"The Galerkin finite element solution uh of the Possion equation −∆u = f under the Neumann boundary condition in a possibly nonconvex polygon Ω, with a graded mesh locally refined at the corners of the domain, is shown to satisfy the following maximum-norm stability: ‖uh‖L∞(Ω) ≤ C`h‖u‖L∞(Ω), where `h = ln(2+1/h) for piecewise linear elements and `h = 1 for higher-order elements. As a result of the maximum-norm stability, the following best approximation result holds: ‖u− uh‖L∞(Ω) ≤ C`h‖u− Ihu‖L∞(Ω), where Ih denotes the Lagrange interpolation operator onto the finite element space. For a locally quasi-uniform triangulation sufficiently refined at the corners, the above best approximation property implies the following optimal-order error bound in the maximum norm: ‖u− uh‖L∞(Ω) ≤ { C`hh k+2− 2 p ‖f‖Wk,p(Ω) if r ≥ k + 1, C`hh ‖f‖Hk(Ω) if r = k, where r ≥ 1 is the degree of finite elements, k is any nonnegative integer no larger than r, and p ∈ [2,∞) can be arbitrarily large.","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":"6 1","pages":"1533-1585"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Maximum-norm stability of the finite element method for the Neumann problem in nonconvex polygons with locally refined mesh\",\"authors\":\"Buyang Li\",\"doi\":\"10.1090/mcom/3724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Galerkin finite element solution uh of the Possion equation −∆u = f under the Neumann boundary condition in a possibly nonconvex polygon Ω, with a graded mesh locally refined at the corners of the domain, is shown to satisfy the following maximum-norm stability: ‖uh‖L∞(Ω) ≤ C`h‖u‖L∞(Ω), where `h = ln(2+1/h) for piecewise linear elements and `h = 1 for higher-order elements. As a result of the maximum-norm stability, the following best approximation result holds: ‖u− uh‖L∞(Ω) ≤ C`h‖u− Ihu‖L∞(Ω), where Ih denotes the Lagrange interpolation operator onto the finite element space. For a locally quasi-uniform triangulation sufficiently refined at the corners, the above best approximation property implies the following optimal-order error bound in the maximum norm: ‖u− uh‖L∞(Ω) ≤ { C`hh k+2− 2 p ‖f‖Wk,p(Ω) if r ≥ k + 1, C`hh ‖f‖Hk(Ω) if r = k, where r ≥ 1 is the degree of finite elements, k is any nonnegative integer no larger than r, and p ∈ [2,∞) can be arbitrarily large.\",\"PeriodicalId\":18301,\"journal\":{\"name\":\"Math. Comput. Model.\",\"volume\":\"6 1\",\"pages\":\"1533-1585\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Math. Comput. Model.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3724\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Math. Comput. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Maximum-norm stability of the finite element method for the Neumann problem in nonconvex polygons with locally refined mesh
The Galerkin finite element solution uh of the Possion equation −∆u = f under the Neumann boundary condition in a possibly nonconvex polygon Ω, with a graded mesh locally refined at the corners of the domain, is shown to satisfy the following maximum-norm stability: ‖uh‖L∞(Ω) ≤ C`h‖u‖L∞(Ω), where `h = ln(2+1/h) for piecewise linear elements and `h = 1 for higher-order elements. As a result of the maximum-norm stability, the following best approximation result holds: ‖u− uh‖L∞(Ω) ≤ C`h‖u− Ihu‖L∞(Ω), where Ih denotes the Lagrange interpolation operator onto the finite element space. For a locally quasi-uniform triangulation sufficiently refined at the corners, the above best approximation property implies the following optimal-order error bound in the maximum norm: ‖u− uh‖L∞(Ω) ≤ { C`hh k+2− 2 p ‖f‖Wk,p(Ω) if r ≥ k + 1, C`hh ‖f‖Hk(Ω) if r = k, where r ≥ 1 is the degree of finite elements, k is any nonnegative integer no larger than r, and p ∈ [2,∞) can be arbitrarily large.