{"title":"安培循环定律的理论推导","authors":"Yiran Luo, Shimeng Feng","doi":"10.12691/ijp-8-3-3","DOIUrl":null,"url":null,"abstract":"Amperes circuital law is a very important formula in classical electromagnetics. However, the corresponding detailed theoretical derivation is rarely seen in relevant textbooks. In this paper, based on the magnetic field produced by a moving charge, we taken the divergence theorem and rotation of the magnetic field, respectively, and given a series of mathematical transformations. At last, we derived Ampere's circuital law of the magnetic field, which is very helpful to understand the physical source of the law.","PeriodicalId":22540,"journal":{"name":"The International Journal of Physics","volume":"14 1","pages":"105-107"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical Derivation of Ampere's Circuital Law\",\"authors\":\"Yiran Luo, Shimeng Feng\",\"doi\":\"10.12691/ijp-8-3-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Amperes circuital law is a very important formula in classical electromagnetics. However, the corresponding detailed theoretical derivation is rarely seen in relevant textbooks. In this paper, based on the magnetic field produced by a moving charge, we taken the divergence theorem and rotation of the magnetic field, respectively, and given a series of mathematical transformations. At last, we derived Ampere's circuital law of the magnetic field, which is very helpful to understand the physical source of the law.\",\"PeriodicalId\":22540,\"journal\":{\"name\":\"The International Journal of Physics\",\"volume\":\"14 1\",\"pages\":\"105-107\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International Journal of Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12691/ijp-8-3-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12691/ijp-8-3-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Amperes circuital law is a very important formula in classical electromagnetics. However, the corresponding detailed theoretical derivation is rarely seen in relevant textbooks. In this paper, based on the magnetic field produced by a moving charge, we taken the divergence theorem and rotation of the magnetic field, respectively, and given a series of mathematical transformations. At last, we derived Ampere's circuital law of the magnetic field, which is very helpful to understand the physical source of the law.