基于密度估计和结构约束的姿态聚类

S. Moss, E. Hancock
{"title":"基于密度估计和结构约束的姿态聚类","authors":"S. Moss, E. Hancock","doi":"10.1109/CVPR.1999.784613","DOIUrl":null,"url":null,"abstract":"This paper describes a statistical framework for object alignment by pose clustering. The idea underlying pose clustering is to transform the alignment process from the image domain to that of the appropriate transformation parameters. It commence by taking k-tuples from the primitive-sets for the model and the data. The size of the k-tuples is such that there are sufficient measurements available to estimate the full-set of transformation parameters. By pairing each k-tuple in the model and each k-tuple in the data, a set of transformation parameter estimates or alignment votes is accumulated. The work reported here draws on three ideas. Firstly, we estimate maximum likelihood alignment parameters by using the the EM algorithm to fit a mixture model to the set of transformation parameter votes. Secondly, we control the order of the underlying structure model using a minimum description length criterion. Finally, we limit problems of combinatorial background by imposing structural constraints on the k-tuples.","PeriodicalId":20644,"journal":{"name":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","volume":"33 1","pages":"85-91 Vol. 2"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Pose clustering with density estimation and structural constraints\",\"authors\":\"S. Moss, E. Hancock\",\"doi\":\"10.1109/CVPR.1999.784613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a statistical framework for object alignment by pose clustering. The idea underlying pose clustering is to transform the alignment process from the image domain to that of the appropriate transformation parameters. It commence by taking k-tuples from the primitive-sets for the model and the data. The size of the k-tuples is such that there are sufficient measurements available to estimate the full-set of transformation parameters. By pairing each k-tuple in the model and each k-tuple in the data, a set of transformation parameter estimates or alignment votes is accumulated. The work reported here draws on three ideas. Firstly, we estimate maximum likelihood alignment parameters by using the the EM algorithm to fit a mixture model to the set of transformation parameter votes. Secondly, we control the order of the underlying structure model using a minimum description length criterion. Finally, we limit problems of combinatorial background by imposing structural constraints on the k-tuples.\",\"PeriodicalId\":20644,\"journal\":{\"name\":\"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)\",\"volume\":\"33 1\",\"pages\":\"85-91 Vol. 2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.1999.784613\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1999.784613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文描述了一种基于姿态聚类的目标对齐统计框架。姿态聚类的基本思想是将对齐过程从图像域转换为相应的转换参数域。它首先从模型和数据的基本集合中取k元组。k元组的大小使得有足够的测量值可用来估计转换参数的全部集合。通过将模型中的每个k元组与数据中的每个k元组配对,可以累积一组转换参数估计或对齐投票。这里报告的工作借鉴了三个想法。首先,我们使用EM算法估计最大似然对齐参数,将混合模型拟合到转换参数投票集上。其次,我们使用最小描述长度准则来控制底层结构模型的顺序。最后,我们通过对k元组施加结构约束来限制组合背景问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pose clustering with density estimation and structural constraints
This paper describes a statistical framework for object alignment by pose clustering. The idea underlying pose clustering is to transform the alignment process from the image domain to that of the appropriate transformation parameters. It commence by taking k-tuples from the primitive-sets for the model and the data. The size of the k-tuples is such that there are sufficient measurements available to estimate the full-set of transformation parameters. By pairing each k-tuple in the model and each k-tuple in the data, a set of transformation parameter estimates or alignment votes is accumulated. The work reported here draws on three ideas. Firstly, we estimate maximum likelihood alignment parameters by using the the EM algorithm to fit a mixture model to the set of transformation parameter votes. Secondly, we control the order of the underlying structure model using a minimum description length criterion. Finally, we limit problems of combinatorial background by imposing structural constraints on the k-tuples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信