难处理分布的无偏多水平蒙特卡罗方法:MLMC满足MCMC

Guanyang Wang, T. Wang
{"title":"难处理分布的无偏多水平蒙特卡罗方法:MLMC满足MCMC","authors":"Guanyang Wang, T. Wang","doi":"10.48550/arXiv.2204.04808","DOIUrl":null,"url":null,"abstract":"Constructing unbiased estimators from Markov chain Monte Carlo (MCMC) outputs is a difficult problem that has recently received a lot of attention in the statistics and machine learning communities. However, the current unbiased MCMC framework only works when the quantity of interest is an expectation, which excludes many practical applications. In this paper, we propose a general method for constructing unbiased estimators for functions of expectations and extend it to construct unbiased estimators for nested expectations. Our approach combines and generalizes the unbiased MCMC and Multilevel Monte Carlo (MLMC) methods. In contrast to traditional sequential methods, our estimator can be implemented on parallel processors. We show that our estimator has a finite variance and computational complexity and can achieve $\\varepsilon$-accuracy within the optimal $O(1/\\varepsilon^2)$ computational cost under mild conditions. Our numerical experiments confirm our theoretical findings and demonstrate the benefits of unbiased estimators in the massively parallel regime.","PeriodicalId":14794,"journal":{"name":"J. Mach. Learn. Res.","volume":"369 1","pages":"249:1-249:40"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Unbiased Multilevel Monte Carlo methods for intractable distributions: MLMC meets MCMC\",\"authors\":\"Guanyang Wang, T. Wang\",\"doi\":\"10.48550/arXiv.2204.04808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Constructing unbiased estimators from Markov chain Monte Carlo (MCMC) outputs is a difficult problem that has recently received a lot of attention in the statistics and machine learning communities. However, the current unbiased MCMC framework only works when the quantity of interest is an expectation, which excludes many practical applications. In this paper, we propose a general method for constructing unbiased estimators for functions of expectations and extend it to construct unbiased estimators for nested expectations. Our approach combines and generalizes the unbiased MCMC and Multilevel Monte Carlo (MLMC) methods. In contrast to traditional sequential methods, our estimator can be implemented on parallel processors. We show that our estimator has a finite variance and computational complexity and can achieve $\\\\varepsilon$-accuracy within the optimal $O(1/\\\\varepsilon^2)$ computational cost under mild conditions. Our numerical experiments confirm our theoretical findings and demonstrate the benefits of unbiased estimators in the massively parallel regime.\",\"PeriodicalId\":14794,\"journal\":{\"name\":\"J. Mach. Learn. Res.\",\"volume\":\"369 1\",\"pages\":\"249:1-249:40\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Mach. Learn. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2204.04808\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Mach. Learn. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2204.04808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

从马尔可夫链蒙特卡罗(MCMC)输出构造无偏估计量是近年来统计学和机器学习领域备受关注的一个难题。然而,目前的无偏MCMC框架仅在期望兴趣量时有效,这排除了许多实际应用。本文提出了构造期望函数无偏估计量的一般方法,并将其推广到构造嵌套期望的无偏估计量。我们的方法结合并推广了无偏MCMC和多层蒙特卡罗(MLMC)方法。与传统的顺序方法相比,我们的估计器可以在并行处理器上实现。我们证明了我们的估计器具有有限的方差和计算复杂度,并且在温和的条件下可以在最优的$O(1/\varepsilon^2)$计算成本内实现$\varepsilon$-精度。我们的数值实验证实了我们的理论发现,并证明了无偏估计器在大规模并行状态下的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unbiased Multilevel Monte Carlo methods for intractable distributions: MLMC meets MCMC
Constructing unbiased estimators from Markov chain Monte Carlo (MCMC) outputs is a difficult problem that has recently received a lot of attention in the statistics and machine learning communities. However, the current unbiased MCMC framework only works when the quantity of interest is an expectation, which excludes many practical applications. In this paper, we propose a general method for constructing unbiased estimators for functions of expectations and extend it to construct unbiased estimators for nested expectations. Our approach combines and generalizes the unbiased MCMC and Multilevel Monte Carlo (MLMC) methods. In contrast to traditional sequential methods, our estimator can be implemented on parallel processors. We show that our estimator has a finite variance and computational complexity and can achieve $\varepsilon$-accuracy within the optimal $O(1/\varepsilon^2)$ computational cost under mild conditions. Our numerical experiments confirm our theoretical findings and demonstrate the benefits of unbiased estimators in the massively parallel regime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信