未知奇异函数积分的量子复杂性

Maciej Goćwin
{"title":"未知奇异函数积分的量子复杂性","authors":"Maciej Goćwin","doi":"10.26421/QIC23.7-8-4","DOIUrl":null,"url":null,"abstract":"In this paper we study the quantum complexity of the integration of a function with an unknown singularity. We assume that the function has $r$ continuous derivatives, with the derivative of order $r$ being H\\\"older continuous with the exponent $\\rho$ on the whole integration interval except the one singular point. We show that the $\\ve$-complexity of this problem is of order $\\ve^{-1/(r+\\rho+1)}$. Since the classical deterministic complexity of this problem is $\\ve^{-1/(r+\\rho)}$, quantum computers give a speed-up for this problem for all values of parameters $r$ and $\\rho$.","PeriodicalId":20904,"journal":{"name":"Quantum Inf. Comput.","volume":"43 1","pages":"603-613"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the quantum complexity of integration of a function with unknown singularity\",\"authors\":\"Maciej Goćwin\",\"doi\":\"10.26421/QIC23.7-8-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study the quantum complexity of the integration of a function with an unknown singularity. We assume that the function has $r$ continuous derivatives, with the derivative of order $r$ being H\\\\\\\"older continuous with the exponent $\\\\rho$ on the whole integration interval except the one singular point. We show that the $\\\\ve$-complexity of this problem is of order $\\\\ve^{-1/(r+\\\\rho+1)}$. Since the classical deterministic complexity of this problem is $\\\\ve^{-1/(r+\\\\rho)}$, quantum computers give a speed-up for this problem for all values of parameters $r$ and $\\\\rho$.\",\"PeriodicalId\":20904,\"journal\":{\"name\":\"Quantum Inf. Comput.\",\"volume\":\"43 1\",\"pages\":\"603-613\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Inf. Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26421/QIC23.7-8-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Inf. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26421/QIC23.7-8-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the quantum complexity of integration of a function with unknown singularity
In this paper we study the quantum complexity of the integration of a function with an unknown singularity. We assume that the function has $r$ continuous derivatives, with the derivative of order $r$ being H\"older continuous with the exponent $\rho$ on the whole integration interval except the one singular point. We show that the $\ve$-complexity of this problem is of order $\ve^{-1/(r+\rho+1)}$. Since the classical deterministic complexity of this problem is $\ve^{-1/(r+\rho)}$, quantum computers give a speed-up for this problem for all values of parameters $r$ and $\rho$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信