正则网格的L '(2,1) -边着色数

IF 0.8 4区 数学 Q2 MATHEMATICS
D. Deepthy, J. V. Kureethara
{"title":"正则网格的L '(2,1) -边着色数","authors":"D. Deepthy, J. V. Kureethara","doi":"10.2478/auom-2019-0034","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we study multi-level distance edge labeling for infinite rectangular, hexagonal and triangular grids. We label the edges with non-negative integers. If the edges are adjacent, then their color difference is at least 2 and if they are separated by exactly a single edge, then their colors must be distinct. We find the edge coloring number of these grids to be 9, 7 and 16, respectively so that we could color the edges of a rectangular, hexagonal and triangular grid with at most 10, 8 and 17 colors, respectively using this coloring technique. Repeating the sequence pattern for different grids, we can color the edges of a grid of larger size.","PeriodicalId":55522,"journal":{"name":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","volume":"1 1","pages":"65 - 81"},"PeriodicalIF":0.8000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On L′ (2, 1)–Edge Coloring Number of Regular Grids\",\"authors\":\"D. Deepthy, J. V. Kureethara\",\"doi\":\"10.2478/auom-2019-0034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we study multi-level distance edge labeling for infinite rectangular, hexagonal and triangular grids. We label the edges with non-negative integers. If the edges are adjacent, then their color difference is at least 2 and if they are separated by exactly a single edge, then their colors must be distinct. We find the edge coloring number of these grids to be 9, 7 and 16, respectively so that we could color the edges of a rectangular, hexagonal and triangular grid with at most 10, 8 and 17 colors, respectively using this coloring technique. Repeating the sequence pattern for different grids, we can color the edges of a grid of larger size.\",\"PeriodicalId\":55522,\"journal\":{\"name\":\"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica\",\"volume\":\"1 1\",\"pages\":\"65 - 81\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2478/auom-2019-0034\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/auom-2019-0034","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

摘要本文研究了无限矩形、六边形和三角形网格的多级距离边缘标注问题。我们用非负整数标记这些边。如果这两条边是相邻的,那么它们的色差至少是2,如果它们只被一条边分开,那么它们的颜色必须是不同的。我们发现这些网格的边缘上色数分别为9、7和16,因此我们可以使用这种上色技术分别为矩形、六边形和三角形网格的边缘上色最多为10、8和17种颜色。为不同的网格重复序列模式,我们可以为更大尺寸的网格的边缘上色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On L′ (2, 1)–Edge Coloring Number of Regular Grids
Abstract In this paper, we study multi-level distance edge labeling for infinite rectangular, hexagonal and triangular grids. We label the edges with non-negative integers. If the edges are adjacent, then their color difference is at least 2 and if they are separated by exactly a single edge, then their colors must be distinct. We find the edge coloring number of these grids to be 9, 7 and 16, respectively so that we could color the edges of a rectangular, hexagonal and triangular grid with at most 10, 8 and 17 colors, respectively using this coloring technique. Repeating the sequence pattern for different grids, we can color the edges of a grid of larger size.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
15
审稿时长
6-12 weeks
期刊介绍: This journal is founded by Mirela Stefanescu and Silviu Sburlan in 1993 and is devoted to pure and applied mathematics. Published by Faculty of Mathematics and Computer Science, Ovidius University, Constanta, Romania.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信