基于平均百分比误差的自动预报误差校正仿真评价

Sarah Zeiml, Ulrich Seiler, K. Altendorfer, Thomas Felberbauer
{"title":"基于平均百分比误差的自动预报误差校正仿真评价","authors":"Sarah Zeiml, Ulrich Seiler, K. Altendorfer, Thomas Felberbauer","doi":"10.1109/WSC48552.2020.9384055","DOIUrl":null,"url":null,"abstract":"A supplier-customer relationship is studied in this paper, where the customer provides demand forecasts that are updated on a rolling horizon basis. The forecasts show systematic and unsystematic errors related to periods before delivery. The paper presents a decision model to decide whether a recently presented forecast correction model should be applied or not. The introduced dynamic correction model is evaluated for different market scenarios, i.e., seasonal demand with periods with significantly higher or lower demand, and changing planning behaviors, where the systematic bias changes over time. The study shows that the application of the developed dynamic forecast correction model leads to significant forecast quality improvement. However, if no systematic forecast bias occurs, the correction reduces forecast accuracy.","PeriodicalId":6692,"journal":{"name":"2020 Winter Simulation Conference (WSC)","volume":"33 1","pages":"1572-1583"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation Evaluation of Automated Forecast Error Correction Based on Mean Percentage Error\",\"authors\":\"Sarah Zeiml, Ulrich Seiler, K. Altendorfer, Thomas Felberbauer\",\"doi\":\"10.1109/WSC48552.2020.9384055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A supplier-customer relationship is studied in this paper, where the customer provides demand forecasts that are updated on a rolling horizon basis. The forecasts show systematic and unsystematic errors related to periods before delivery. The paper presents a decision model to decide whether a recently presented forecast correction model should be applied or not. The introduced dynamic correction model is evaluated for different market scenarios, i.e., seasonal demand with periods with significantly higher or lower demand, and changing planning behaviors, where the systematic bias changes over time. The study shows that the application of the developed dynamic forecast correction model leads to significant forecast quality improvement. However, if no systematic forecast bias occurs, the correction reduces forecast accuracy.\",\"PeriodicalId\":6692,\"journal\":{\"name\":\"2020 Winter Simulation Conference (WSC)\",\"volume\":\"33 1\",\"pages\":\"1572-1583\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Winter Simulation Conference (WSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC48552.2020.9384055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC48552.2020.9384055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一个供应商-客户关系,其中客户提供的需求预测是在滚动地平线的基础上更新的。这些预测显示出与交货前的时间有关的系统性和非系统性误差。本文提出了一个决策模型来决定是否应用最近提出的预测修正模型。引入的动态修正模型对不同的市场情景进行了评估,即需求显著增加或减少的季节需求,以及不断变化的计划行为,其中系统偏差随时间而变化。研究表明,应用所建立的动态预报修正模型,预报质量得到了显著提高。但是,如果没有出现系统的预报偏差,则修正会降低预报的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation Evaluation of Automated Forecast Error Correction Based on Mean Percentage Error
A supplier-customer relationship is studied in this paper, where the customer provides demand forecasts that are updated on a rolling horizon basis. The forecasts show systematic and unsystematic errors related to periods before delivery. The paper presents a decision model to decide whether a recently presented forecast correction model should be applied or not. The introduced dynamic correction model is evaluated for different market scenarios, i.e., seasonal demand with periods with significantly higher or lower demand, and changing planning behaviors, where the systematic bias changes over time. The study shows that the application of the developed dynamic forecast correction model leads to significant forecast quality improvement. However, if no systematic forecast bias occurs, the correction reduces forecast accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信