在云中实现分析质量的挑战

Hong Linh Truong, A. Murguzur, Erica Y. Yang
{"title":"在云中实现分析质量的挑战","authors":"Hong Linh Truong, A. Murguzur, Erica Y. Yang","doi":"10.1145/3138806","DOIUrl":null,"url":null,"abstract":"Currently, domain scientists (DSs) face challenges in managing quality across multiple data analytics contexts (DACs). We identify and define quality of analytics (QoA) in dynamic and diverse environments, e.g., based on cloud computing resources for big data sources, as a composition of quality of data (data quality), performance, and cost, to name just the main factors. QoA is a complex matter and not just about quality of data or performance, which are typically considered separately when evaluating existing data analytics frameworks/algorithms. Frequently, the DS needs to utilize multiple frameworks to run different (sub)analytics, and, at the same time, the sub-analytics executed in these frameworks exchange inputs and outputs each other. In these cases, we observe different DACs, where a DAC refers to a particular situation in which the DS works with a specific framework to run a sub-analytics carried out by pipeline(s) or tasks in a pipeline. Each DAC has a set of interactions in the following categories:","PeriodicalId":15582,"journal":{"name":"Journal of Data and Information Quality (JDIQ)","volume":"6 1","pages":"1 - 4"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Challenges in Enabling Quality of Analytics in the Cloud\",\"authors\":\"Hong Linh Truong, A. Murguzur, Erica Y. Yang\",\"doi\":\"10.1145/3138806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, domain scientists (DSs) face challenges in managing quality across multiple data analytics contexts (DACs). We identify and define quality of analytics (QoA) in dynamic and diverse environments, e.g., based on cloud computing resources for big data sources, as a composition of quality of data (data quality), performance, and cost, to name just the main factors. QoA is a complex matter and not just about quality of data or performance, which are typically considered separately when evaluating existing data analytics frameworks/algorithms. Frequently, the DS needs to utilize multiple frameworks to run different (sub)analytics, and, at the same time, the sub-analytics executed in these frameworks exchange inputs and outputs each other. In these cases, we observe different DACs, where a DAC refers to a particular situation in which the DS works with a specific framework to run a sub-analytics carried out by pipeline(s) or tasks in a pipeline. Each DAC has a set of interactions in the following categories:\",\"PeriodicalId\":15582,\"journal\":{\"name\":\"Journal of Data and Information Quality (JDIQ)\",\"volume\":\"6 1\",\"pages\":\"1 - 4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Data and Information Quality (JDIQ)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3138806\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Data and Information Quality (JDIQ)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3138806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

目前,领域科学家(DSs)面临着跨多个数据分析上下文(dac)管理质量的挑战。我们在动态和多样化的环境中识别和定义分析质量(QoA),例如,基于大数据源的云计算资源,作为数据质量(数据质量),性能和成本的组合,仅举几个主要因素。QoA是一个复杂的问题,不仅仅是关于数据质量或性能,在评估现有数据分析框架/算法时,通常会单独考虑这两个问题。通常,DS需要利用多个框架来运行不同的(子)分析,同时,在这些框架中执行的子分析相互交换输入和输出。在这些情况下,我们观察到不同的DAC,其中DAC指的是DS与特定框架一起工作以运行由管道或管道中的任务执行的子分析的特定情况。每个DAC都有以下类别的一组交互:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Challenges in Enabling Quality of Analytics in the Cloud
Currently, domain scientists (DSs) face challenges in managing quality across multiple data analytics contexts (DACs). We identify and define quality of analytics (QoA) in dynamic and diverse environments, e.g., based on cloud computing resources for big data sources, as a composition of quality of data (data quality), performance, and cost, to name just the main factors. QoA is a complex matter and not just about quality of data or performance, which are typically considered separately when evaluating existing data analytics frameworks/algorithms. Frequently, the DS needs to utilize multiple frameworks to run different (sub)analytics, and, at the same time, the sub-analytics executed in these frameworks exchange inputs and outputs each other. In these cases, we observe different DACs, where a DAC refers to a particular situation in which the DS works with a specific framework to run a sub-analytics carried out by pipeline(s) or tasks in a pipeline. Each DAC has a set of interactions in the following categories:
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信