基于小波的形态计量数据分析

C.M. Takemura , R.M. Cesar- Jr. , R.A.T. Arantes , L. da F. Costa , E. Hingst-Zaher , V. Bonato , S.F. dos Reis
{"title":"基于小波的形态计量数据分析","authors":"C.M. Takemura ,&nbsp;R.M. Cesar- Jr. ,&nbsp;R.A.T. Arantes ,&nbsp;L. da F. Costa ,&nbsp;E. Hingst-Zaher ,&nbsp;V. Bonato ,&nbsp;S.F. dos Reis","doi":"10.1016/j.rti.2004.05.006","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we present a new shape analysis approach using the well-known wavelet transform and exploring shape representation by landmarks. First, we describe the approach adopted to represent the landmarks data as parametric signals. Then, we show the relation of the derivatives of Gaussian wavelet transform applied to the signal-to-differential properties of the shape that it represents. We present experimental results using real data to show how it is possible to characterize shapes through multiscale and differential signal-processing techniques in order to relate morphological variables with phylogenetic signal, environmental factors and sexual dimorphism. The goal of this research is to develop an effective wavelet transform-based method to represent and classify multiple classes of shapes given by landmarks.</p></div>","PeriodicalId":101062,"journal":{"name":"Real-Time Imaging","volume":"10 4","pages":"Pages 239-250"},"PeriodicalIF":0.0000,"publicationDate":"2004-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.rti.2004.05.006","citationCount":"8","resultStr":"{\"title\":\"Morphometrical data analysis using wavelets\",\"authors\":\"C.M. Takemura ,&nbsp;R.M. Cesar- Jr. ,&nbsp;R.A.T. Arantes ,&nbsp;L. da F. Costa ,&nbsp;E. Hingst-Zaher ,&nbsp;V. Bonato ,&nbsp;S.F. dos Reis\",\"doi\":\"10.1016/j.rti.2004.05.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we present a new shape analysis approach using the well-known wavelet transform and exploring shape representation by landmarks. First, we describe the approach adopted to represent the landmarks data as parametric signals. Then, we show the relation of the derivatives of Gaussian wavelet transform applied to the signal-to-differential properties of the shape that it represents. We present experimental results using real data to show how it is possible to characterize shapes through multiscale and differential signal-processing techniques in order to relate morphological variables with phylogenetic signal, environmental factors and sexual dimorphism. The goal of this research is to develop an effective wavelet transform-based method to represent and classify multiple classes of shapes given by landmarks.</p></div>\",\"PeriodicalId\":101062,\"journal\":{\"name\":\"Real-Time Imaging\",\"volume\":\"10 4\",\"pages\":\"Pages 239-250\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.rti.2004.05.006\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Real-Time Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1077201404000452\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Real-Time Imaging","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077201404000452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在本文中,我们提出了一种新的形状分析方法,利用众所周知的小波变换和探索形状的标志表示。首先,我们描述了将地标数据表示为参数信号的方法。然后,我们展示了高斯小波变换的导数与它所代表的形状的信微分性质的关系。我们使用真实数据展示了如何通过多尺度和差分信号处理技术来表征形状,以便将形态学变量与系统发育信号、环境因素和两性二态性联系起来。本研究的目的是开发一种有效的基于小波变换的方法来表示和分类由地标给出的多类形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Morphometrical data analysis using wavelets

In this paper, we present a new shape analysis approach using the well-known wavelet transform and exploring shape representation by landmarks. First, we describe the approach adopted to represent the landmarks data as parametric signals. Then, we show the relation of the derivatives of Gaussian wavelet transform applied to the signal-to-differential properties of the shape that it represents. We present experimental results using real data to show how it is possible to characterize shapes through multiscale and differential signal-processing techniques in order to relate morphological variables with phylogenetic signal, environmental factors and sexual dimorphism. The goal of this research is to develop an effective wavelet transform-based method to represent and classify multiple classes of shapes given by landmarks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信