基于图的V-MIMO无线传感器网络聚类与预处理

Rakesh Mundlamuri, B. Thangapandian, Vijay Kumar Chakka, Srikanth Goli
{"title":"基于图的V-MIMO无线传感器网络聚类与预处理","authors":"Rakesh Mundlamuri, B. Thangapandian, Vijay Kumar Chakka, Srikanth Goli","doi":"10.1109/NCC.2019.8732213","DOIUrl":null,"url":null,"abstract":"This paper presents a graph based methodology for increasing the channel capacity of Virtual-Multiple Input Multiple Output (V-MIMO) defined over a Wireless Sensor Network (WSN). A fully connected graph $\\mathcal{G}(\\mathcal{V},\\ \\mathcal{E},\\ \\mathcal{W})$ is defined for a WSN. Then, we propose a new clustering algorithm based on the Fiedler vector of the graph $\\mathcal{G}$ which divides the sensor nodes $\\mathcal{V}$ into twoclusters (transmitting and receiving antennas). The links between these two clusters results in V-MIMO network. Next, a Modified Maximum Spanning Tree Search algorithm (MMASTS) is proposed on V-MIMO to enhance the average channel capacity. Simulation performance of average channel capacity and uncoded Bit Error Rate (BER) are plotted using different precoding techniques like Zero Forcing (ZF) and Minimum Mean Square Error (MMSE). These are also used for comparing the performance of proposed Fiedler vector based clustering with $k$- means clustering.","PeriodicalId":6870,"journal":{"name":"2019 National Conference on Communications (NCC)","volume":"19 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Graph Based Clustering and Preconditioning of V-MIMO Wireless Sensor Networks\",\"authors\":\"Rakesh Mundlamuri, B. Thangapandian, Vijay Kumar Chakka, Srikanth Goli\",\"doi\":\"10.1109/NCC.2019.8732213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a graph based methodology for increasing the channel capacity of Virtual-Multiple Input Multiple Output (V-MIMO) defined over a Wireless Sensor Network (WSN). A fully connected graph $\\\\mathcal{G}(\\\\mathcal{V},\\\\ \\\\mathcal{E},\\\\ \\\\mathcal{W})$ is defined for a WSN. Then, we propose a new clustering algorithm based on the Fiedler vector of the graph $\\\\mathcal{G}$ which divides the sensor nodes $\\\\mathcal{V}$ into twoclusters (transmitting and receiving antennas). The links between these two clusters results in V-MIMO network. Next, a Modified Maximum Spanning Tree Search algorithm (MMASTS) is proposed on V-MIMO to enhance the average channel capacity. Simulation performance of average channel capacity and uncoded Bit Error Rate (BER) are plotted using different precoding techniques like Zero Forcing (ZF) and Minimum Mean Square Error (MMSE). These are also used for comparing the performance of proposed Fiedler vector based clustering with $k$- means clustering.\",\"PeriodicalId\":6870,\"journal\":{\"name\":\"2019 National Conference on Communications (NCC)\",\"volume\":\"19 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 National Conference on Communications (NCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCC.2019.8732213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC.2019.8732213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于图形的方法来增加无线传感器网络(WSN)上定义的虚拟多输入多输出(V-MIMO)信道容量。定义了一个全连通图$\mathcal{G}(\mathcal{V},\ \mathcal{E},\ \mathcal{W})$。然后,我们提出了一种新的基于图$\mathcal{G}$的Fiedler向量的聚类算法,该算法将传感器节点$\mathcal{V}$划分为两个簇(发射天线和接收天线)。这两个集群之间的链接形成了V-MIMO网络。其次,提出了一种改进的最大生成树搜索算法(mmast)来提高V-MIMO的平均信道容量。利用零强迫(Zero Forcing, ZF)和最小均方误差(Minimum Mean Square Error, MMSE)等不同的预编码技术,绘制了信道平均容量和未编码误码率的仿真性能。这些也用于比较所提出的基于Fiedler向量的聚类与$k$均值聚类的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Graph Based Clustering and Preconditioning of V-MIMO Wireless Sensor Networks
This paper presents a graph based methodology for increasing the channel capacity of Virtual-Multiple Input Multiple Output (V-MIMO) defined over a Wireless Sensor Network (WSN). A fully connected graph $\mathcal{G}(\mathcal{V},\ \mathcal{E},\ \mathcal{W})$ is defined for a WSN. Then, we propose a new clustering algorithm based on the Fiedler vector of the graph $\mathcal{G}$ which divides the sensor nodes $\mathcal{V}$ into twoclusters (transmitting and receiving antennas). The links between these two clusters results in V-MIMO network. Next, a Modified Maximum Spanning Tree Search algorithm (MMASTS) is proposed on V-MIMO to enhance the average channel capacity. Simulation performance of average channel capacity and uncoded Bit Error Rate (BER) are plotted using different precoding techniques like Zero Forcing (ZF) and Minimum Mean Square Error (MMSE). These are also used for comparing the performance of proposed Fiedler vector based clustering with $k$- means clustering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信