S. Kharitonov, N. L. Kazanskiy, S. G. Volotovsky, S. Khonina
{"title":"基于介电板谐振腔衍射问题经典解的量子特性计算","authors":"S. Kharitonov, N. L. Kazanskiy, S. G. Volotovsky, S. Khonina","doi":"10.18287/2412-6179-co-1174","DOIUrl":null,"url":null,"abstract":"The work is devoted to the development of the quantum theory of diffractive optical elements. Aspects of quantum optics are considered by the example of light diffraction from a dielectric plate in a resonator. The paper shows the connection between the classical and quantum solution of the problem of diffraction by a dielectric plate. Expressions are obtained for the eigenmodes of such a resonator, as well as for the operators of the vector magnetic potential and the electric field strength. The method proposed in this paper can be easily extended to dielectric plates with a diffractive microrelief, that is, to diffractive optical elements.","PeriodicalId":46692,"journal":{"name":"Computer Optics","volume":"93 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Calculation of quantum characteristics based on the classical solution of the diffraction problem in a resonator with a dielectric plate\",\"authors\":\"S. Kharitonov, N. L. Kazanskiy, S. G. Volotovsky, S. Khonina\",\"doi\":\"10.18287/2412-6179-co-1174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The work is devoted to the development of the quantum theory of diffractive optical elements. Aspects of quantum optics are considered by the example of light diffraction from a dielectric plate in a resonator. The paper shows the connection between the classical and quantum solution of the problem of diffraction by a dielectric plate. Expressions are obtained for the eigenmodes of such a resonator, as well as for the operators of the vector magnetic potential and the electric field strength. The method proposed in this paper can be easily extended to dielectric plates with a diffractive microrelief, that is, to diffractive optical elements.\",\"PeriodicalId\":46692,\"journal\":{\"name\":\"Computer Optics\",\"volume\":\"93 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18287/2412-6179-co-1174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/2412-6179-co-1174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
Calculation of quantum characteristics based on the classical solution of the diffraction problem in a resonator with a dielectric plate
The work is devoted to the development of the quantum theory of diffractive optical elements. Aspects of quantum optics are considered by the example of light diffraction from a dielectric plate in a resonator. The paper shows the connection between the classical and quantum solution of the problem of diffraction by a dielectric plate. Expressions are obtained for the eigenmodes of such a resonator, as well as for the operators of the vector magnetic potential and the electric field strength. The method proposed in this paper can be easily extended to dielectric plates with a diffractive microrelief, that is, to diffractive optical elements.
期刊介绍:
The journal is intended for researchers and specialists active in the following research areas: Diffractive Optics; Information Optical Technology; Nanophotonics and Optics of Nanostructures; Image Analysis & Understanding; Information Coding & Security; Earth Remote Sensing Technologies; Hyperspectral Data Analysis; Numerical Methods for Optics and Image Processing; Intelligent Video Analysis. The journal "Computer Optics" has been published since 1987. Published 6 issues per year.