小波与PCA在代谢网络比较中的应用

Yong Luo, Yan Zhao, Lei Cheng
{"title":"小波与PCA在代谢网络比较中的应用","authors":"Yong Luo, Yan Zhao, Lei Cheng","doi":"10.1109/BIBM.2011.27","DOIUrl":null,"url":null,"abstract":"This paper is composed based on principal component analysis and wavelet transform method to compare the metabolic networks. We combine 7 centrality topologies of metabolic network to extract a comprehensive center on principal component analysis and construct the original signal based on statistical method. By using the wavelet tool to describe the metabolic network structure, we build the fuzzy function to compare the metabolic network structure between different species. This method above can effectively analyze the structure similarity of different species' metabolic networks, reveal the species-specific of metabolic networks and lay a mathematical foundation for the evolution of metabolic networks. Also it is the first time to use the wavelet analysis method in studying the metabolic networks, and it makes an attempt on a new research direction.","PeriodicalId":6345,"journal":{"name":"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)","volume":"23 1","pages":"633-638"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wavelet and PCA for Metabolic Network Comparison\",\"authors\":\"Yong Luo, Yan Zhao, Lei Cheng\",\"doi\":\"10.1109/BIBM.2011.27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is composed based on principal component analysis and wavelet transform method to compare the metabolic networks. We combine 7 centrality topologies of metabolic network to extract a comprehensive center on principal component analysis and construct the original signal based on statistical method. By using the wavelet tool to describe the metabolic network structure, we build the fuzzy function to compare the metabolic network structure between different species. This method above can effectively analyze the structure similarity of different species' metabolic networks, reveal the species-specific of metabolic networks and lay a mathematical foundation for the evolution of metabolic networks. Also it is the first time to use the wavelet analysis method in studying the metabolic networks, and it makes an attempt on a new research direction.\",\"PeriodicalId\":6345,\"journal\":{\"name\":\"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)\",\"volume\":\"23 1\",\"pages\":\"633-638\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2011.27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2011.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文基于主成分分析和小波变换方法对代谢网络进行比较。结合代谢网络的7种中心性拓扑,通过主成分分析提取综合中心,并基于统计方法构建原始信号。利用小波工具对代谢网络结构进行描述,建立模糊函数来比较不同物种之间的代谢网络结构。上述方法可以有效地分析不同物种代谢网络的结构相似性,揭示代谢网络的物种特异性,为代谢网络的进化奠定数学基础。首次将小波分析方法应用到代谢网络的研究中,为新的研究方向进行了尝试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wavelet and PCA for Metabolic Network Comparison
This paper is composed based on principal component analysis and wavelet transform method to compare the metabolic networks. We combine 7 centrality topologies of metabolic network to extract a comprehensive center on principal component analysis and construct the original signal based on statistical method. By using the wavelet tool to describe the metabolic network structure, we build the fuzzy function to compare the metabolic network structure between different species. This method above can effectively analyze the structure similarity of different species' metabolic networks, reveal the species-specific of metabolic networks and lay a mathematical foundation for the evolution of metabolic networks. Also it is the first time to use the wavelet analysis method in studying the metabolic networks, and it makes an attempt on a new research direction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信