{"title":"经典随机变量的量子矩问题及相互作用Fock空间的分类","authors":"L. Accardi, Y. Lu","doi":"10.1142/s0219025722500035","DOIUrl":null,"url":null,"abstract":"The fact that any classical random variable with all moments has a quantum decomposition allows to associate to it a family of quantum moments. On the other hand, a classical random variable may have several inequivalent quantum decompositions, which lead to the same classical, but different quantum moments. Even in the simplest Central Limit Theorems (CLT), i.e. those of Bernoulli type, there are examples in which the corresponding quantum moments converge to the canonical quantum moments of the associated classical random variable, and examples in which this is not the case. This poses the problem to find a constructive criterium that characterizes the quantum moments associated to the canonical quantum decomposition (which is unique) with respect to the other ones. Theorem 3 of the present paper provides such a criterium. Theorem 5 deals with the case when one knows a priori that the quantum moments come from a central limit theorem (the motivation of the present paper arose in this context). It gives only a sufficient condition, but simpler to verify than the necessary and sufficient conditions of Theorem 3. Theorem 3 naturally leads to a classification of Interacting Fock Spaces (IFS) into three types. We construct examples showing that all these possibilities can effectively take place. On the way, we prove that all the best known deformations of Heisenberg commutation relations can be obtained as special cases of a general construction within the algebraic approach to the theory of orthogonal polynomials.","PeriodicalId":50366,"journal":{"name":"Infinite Dimensional Analysis Quantum Probability and Related Topics","volume":"21 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The quantum moment problem for a classical random variable and a classification of interacting Fock spaces\",\"authors\":\"L. Accardi, Y. Lu\",\"doi\":\"10.1142/s0219025722500035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fact that any classical random variable with all moments has a quantum decomposition allows to associate to it a family of quantum moments. On the other hand, a classical random variable may have several inequivalent quantum decompositions, which lead to the same classical, but different quantum moments. Even in the simplest Central Limit Theorems (CLT), i.e. those of Bernoulli type, there are examples in which the corresponding quantum moments converge to the canonical quantum moments of the associated classical random variable, and examples in which this is not the case. This poses the problem to find a constructive criterium that characterizes the quantum moments associated to the canonical quantum decomposition (which is unique) with respect to the other ones. Theorem 3 of the present paper provides such a criterium. Theorem 5 deals with the case when one knows a priori that the quantum moments come from a central limit theorem (the motivation of the present paper arose in this context). It gives only a sufficient condition, but simpler to verify than the necessary and sufficient conditions of Theorem 3. Theorem 3 naturally leads to a classification of Interacting Fock Spaces (IFS) into three types. We construct examples showing that all these possibilities can effectively take place. On the way, we prove that all the best known deformations of Heisenberg commutation relations can be obtained as special cases of a general construction within the algebraic approach to the theory of orthogonal polynomials.\",\"PeriodicalId\":50366,\"journal\":{\"name\":\"Infinite Dimensional Analysis Quantum Probability and Related Topics\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infinite Dimensional Analysis Quantum Probability and Related Topics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219025722500035\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infinite Dimensional Analysis Quantum Probability and Related Topics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219025722500035","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
The quantum moment problem for a classical random variable and a classification of interacting Fock spaces
The fact that any classical random variable with all moments has a quantum decomposition allows to associate to it a family of quantum moments. On the other hand, a classical random variable may have several inequivalent quantum decompositions, which lead to the same classical, but different quantum moments. Even in the simplest Central Limit Theorems (CLT), i.e. those of Bernoulli type, there are examples in which the corresponding quantum moments converge to the canonical quantum moments of the associated classical random variable, and examples in which this is not the case. This poses the problem to find a constructive criterium that characterizes the quantum moments associated to the canonical quantum decomposition (which is unique) with respect to the other ones. Theorem 3 of the present paper provides such a criterium. Theorem 5 deals with the case when one knows a priori that the quantum moments come from a central limit theorem (the motivation of the present paper arose in this context). It gives only a sufficient condition, but simpler to verify than the necessary and sufficient conditions of Theorem 3. Theorem 3 naturally leads to a classification of Interacting Fock Spaces (IFS) into three types. We construct examples showing that all these possibilities can effectively take place. On the way, we prove that all the best known deformations of Heisenberg commutation relations can be obtained as special cases of a general construction within the algebraic approach to the theory of orthogonal polynomials.
期刊介绍:
In the past few years the fields of infinite dimensional analysis and quantum probability have undergone increasingly significant developments and have found many new applications, in particular, to classical probability and to different branches of physics. The number of first-class papers in these fields has grown at the same rate. This is currently the only journal which is devoted to these fields.
It constitutes an essential and central point of reference for the large number of mathematicians, mathematical physicists and other scientists who have been drawn into these areas. Both fields have strong interdisciplinary nature, with deep connection to, for example, classical probability, stochastic analysis, mathematical physics, operator algebras, irreversibility, ergodic theory and dynamical systems, quantum groups, classical and quantum stochastic geometry, quantum chaos, Dirichlet forms, harmonic analysis, quantum measurement, quantum computer, etc. The journal reflects this interdisciplinarity and welcomes high quality papers in all such related fields, particularly those which reveal connections with the main fields of this journal.