{"title":"在线pH控制系统的自动调谐","authors":"P. Mercader, K. Soltesz, A. Baños","doi":"10.1109/ETFA.2016.7733588","DOIUrl":null,"url":null,"abstract":"A novel autotuning procedure is presented through application to an industrial in-line pH control system. The procedure has three advantages over classical relay auto-tuners: experiment duration is very short (no need for limit-cycle convergence); all data is used for identification (instead of only peaks and switch instances); a parameter uncertainty model is identified and utilized for robust controller synthesis.","PeriodicalId":6483,"journal":{"name":"2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA)","volume":"1 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Autotuning of an in-line pH control system\",\"authors\":\"P. Mercader, K. Soltesz, A. Baños\",\"doi\":\"10.1109/ETFA.2016.7733588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel autotuning procedure is presented through application to an industrial in-line pH control system. The procedure has three advantages over classical relay auto-tuners: experiment duration is very short (no need for limit-cycle convergence); all data is used for identification (instead of only peaks and switch instances); a parameter uncertainty model is identified and utilized for robust controller synthesis.\",\"PeriodicalId\":6483,\"journal\":{\"name\":\"2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA)\",\"volume\":\"1 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETFA.2016.7733588\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2016.7733588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A novel autotuning procedure is presented through application to an industrial in-line pH control system. The procedure has three advantages over classical relay auto-tuners: experiment duration is very short (no need for limit-cycle convergence); all data is used for identification (instead of only peaks and switch instances); a parameter uncertainty model is identified and utilized for robust controller synthesis.