基于Leibenson-Ishlinsky稳定性准则的柱形优化

{"title":"基于Leibenson-Ishlinsky稳定性准则的柱形优化","authors":"","doi":"10.15372/ftprpi20200505","DOIUrl":null,"url":null,"abstract":"The author solves the problem connected with determination of shape of pillars which remain stable under any compression due to barrel distortion. The analysis of cylindrical structures uses the known Leibenson–Ishlinsky stability criterion. The boundary conditions of the problem and its solution are obtained: elasticity in the form of the critical load dependence on the height/radius ratio of pillars. The found asymptote to the curves is associated with the optimized shape of pillars.","PeriodicalId":24070,"journal":{"name":"Физико-технические проблемы разработки полезных ископаемых","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Pillar Shape Using the Leibenson-Ishlinsky Stability Criterion\",\"authors\":\"\",\"doi\":\"10.15372/ftprpi20200505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The author solves the problem connected with determination of shape of pillars which remain stable under any compression due to barrel distortion. The analysis of cylindrical structures uses the known Leibenson–Ishlinsky stability criterion. The boundary conditions of the problem and its solution are obtained: elasticity in the form of the critical load dependence on the height/radius ratio of pillars. The found asymptote to the curves is associated with the optimized shape of pillars.\",\"PeriodicalId\":24070,\"journal\":{\"name\":\"Физико-технические проблемы разработки полезных ископаемых\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Физико-технические проблемы разработки полезных ископаемых\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15372/ftprpi20200505\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Физико-технические проблемы разработки полезных ископаемых","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15372/ftprpi20200505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

解决了因筒体变形引起的任何压缩条件下保持稳定的柱形确定问题。圆柱结构的分析使用已知的Leibenson-Ishlinsky稳定性判据。得到了问题的边界条件及其解:弹性以临界荷载与柱高/半径比的关系形式存在;曲线的渐近线与优化后的柱形有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of Pillar Shape Using the Leibenson-Ishlinsky Stability Criterion
The author solves the problem connected with determination of shape of pillars which remain stable under any compression due to barrel distortion. The analysis of cylindrical structures uses the known Leibenson–Ishlinsky stability criterion. The boundary conditions of the problem and its solution are obtained: elasticity in the form of the critical load dependence on the height/radius ratio of pillars. The found asymptote to the curves is associated with the optimized shape of pillars.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信