与Schrödinger算子相关的Riesz变换的一些估计

IF 0.3 4区 数学 Q4 MATHEMATICS
Y. H. Wang
{"title":"与Schrödinger算子相关的Riesz变换的一些估计","authors":"Y. H. Wang","doi":"10.54503/0002-3043-2022.57.6-81-94","DOIUrl":null,"url":null,"abstract":"Abstract Let $$\\mathcal{L}=-\\Delta+V$$ be the Schrödinger operator on $$\\mathbb{R}^{n},$$ where $$n\\geq 3,$$ and nonnegative potential $$V$$ belongs to the reverse Hölder class $$RH_{q}$$ with $$n/2\\leq q<n.$$ Let $$H^{p}_{\\mathcal{L}}(\\mathbb{R}^{n})$$ denote the Hardy space related to $$\\mathcal{L}$$ and $$BMO_{\\mathcal{L}}(\\mathbb{R}^{n})$$ denote the dual space of $$H^{1}_{\\mathcal{L}}(\\mathbb{R}^{n}).$$ In this paper, we show that $$T_{\\alpha,\\beta}=V^{\\alpha}\\nabla\\mathcal{L}^{-\\beta}$$ is bounded from $$H^{p_{1}}_{\\mathcal{L}}(\\mathbb{R}^{n})$$ into $$L^{p_{2}}(\\mathbb{R}^{n})$$ for $$\\dfrac{n}{n+\\delta^{\\prime}}<p_{1}\\leq 1$$ and $$\\dfrac{1}{p_{2}}=\\dfrac{1}{p_{1}}-\\dfrac{2(\\beta-\\alpha)}{n},$$ where $$\\delta^{\\prime}=\\min\\{1,2-n/q_{0}\\}$$ and $$q_{0}$$ is the reverse Hölder index of $$V.$$ Moreover, we prove $$T^{*}_{\\alpha,\\beta}$$ is bounded on $$BMO_{\\mathcal{L}}(\\mathbb{R}^{n})$$ when $$\\beta-\\alpha=1/2.$$","PeriodicalId":54854,"journal":{"name":"Journal of Contemporary Mathematical Analysis-Armenian Academy of Sciences","volume":"26 1","pages":"380-394"},"PeriodicalIF":0.3000,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some Estimates for Riesz Transforms Associated with Schrödinger Operators\",\"authors\":\"Y. H. Wang\",\"doi\":\"10.54503/0002-3043-2022.57.6-81-94\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let $$\\\\mathcal{L}=-\\\\Delta+V$$ be the Schrödinger operator on $$\\\\mathbb{R}^{n},$$ where $$n\\\\geq 3,$$ and nonnegative potential $$V$$ belongs to the reverse Hölder class $$RH_{q}$$ with $$n/2\\\\leq q<n.$$ Let $$H^{p}_{\\\\mathcal{L}}(\\\\mathbb{R}^{n})$$ denote the Hardy space related to $$\\\\mathcal{L}$$ and $$BMO_{\\\\mathcal{L}}(\\\\mathbb{R}^{n})$$ denote the dual space of $$H^{1}_{\\\\mathcal{L}}(\\\\mathbb{R}^{n}).$$ In this paper, we show that $$T_{\\\\alpha,\\\\beta}=V^{\\\\alpha}\\\\nabla\\\\mathcal{L}^{-\\\\beta}$$ is bounded from $$H^{p_{1}}_{\\\\mathcal{L}}(\\\\mathbb{R}^{n})$$ into $$L^{p_{2}}(\\\\mathbb{R}^{n})$$ for $$\\\\dfrac{n}{n+\\\\delta^{\\\\prime}}<p_{1}\\\\leq 1$$ and $$\\\\dfrac{1}{p_{2}}=\\\\dfrac{1}{p_{1}}-\\\\dfrac{2(\\\\beta-\\\\alpha)}{n},$$ where $$\\\\delta^{\\\\prime}=\\\\min\\\\{1,2-n/q_{0}\\\\}$$ and $$q_{0}$$ is the reverse Hölder index of $$V.$$ Moreover, we prove $$T^{*}_{\\\\alpha,\\\\beta}$$ is bounded on $$BMO_{\\\\mathcal{L}}(\\\\mathbb{R}^{n})$$ when $$\\\\beta-\\\\alpha=1/2.$$\",\"PeriodicalId\":54854,\"journal\":{\"name\":\"Journal of Contemporary Mathematical Analysis-Armenian Academy of Sciences\",\"volume\":\"26 1\",\"pages\":\"380-394\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Contemporary Mathematical Analysis-Armenian Academy of Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.54503/0002-3043-2022.57.6-81-94\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Contemporary Mathematical Analysis-Armenian Academy of Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.54503/0002-3043-2022.57.6-81-94","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

抽象Let $$\mathcal{L}=-\Delta+V$$ 是Schrödinger的操作员 $$\mathbb{R}^{n},$$ 在哪里 $$n\geq 3,$$ 非负电位 $$V$$ 属于反向Hölder类 $$RH_{q}$$ 有 $$n/2\leq q本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
Some Estimates for Riesz Transforms Associated with Schrödinger Operators
Abstract Let $$\mathcal{L}=-\Delta+V$$ be the Schrödinger operator on $$\mathbb{R}^{n},$$ where $$n\geq 3,$$ and nonnegative potential $$V$$ belongs to the reverse Hölder class $$RH_{q}$$ with $$n/2\leq q
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
32
审稿时长
>12 weeks
期刊介绍: Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences) is an outlet for research stemming from the widely acclaimed Armenian school of theory of functions, this journal today continues the traditions of that school in the area of general analysis. A very prolific group of mathematicians in Yerevan contribute to this leading mathematics journal in the following fields: real and complex analysis; approximations; boundary value problems; integral and stochastic geometry; differential equations; probability; integral equations; algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信