关于半群的包含理想图

Pub Date : 2021-10-27 DOI:10.1142/s1005386723000342
Barkha Baloda, J. Kumar
{"title":"关于半群的包含理想图","authors":"Barkha Baloda, J. Kumar","doi":"10.1142/s1005386723000342","DOIUrl":null,"url":null,"abstract":"The inclusion ideal graph [Formula: see text] of a semigroup [Formula: see text] is an undirected simple graph whose vertices are all the nontrivial left ideals of [Formula: see text] and two distinct left ideals [Formula: see text], [Formula: see text] are adjacent if and only if either [Formula: see text] or [Formula: see text]. The purpose of this paper is to study algebraic properties of the semigroup [Formula: see text] as well as graph theoretic properties of [Formula: see text]. We investigate the connectedness of [Formula: see text] and show that the diameter of [Formula: see text] is at most 3 if it is connected. We also obtain a necessary and sufficient condition of [Formula: see text] such that the clique number of [Formula: see text] is the number of minimal left ideals of [Formula: see text]. Further, various graph invariants of [Formula: see text], viz. perfectness, planarity, girth, etc., are discussed. For a completely simple semigroup [Formula: see text], we investigate properties of [Formula: see text] including its independence number and matching number. Finally, we obtain the automorphism group of [Formula: see text].","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the Inclusion Ideal Graph of Semigroups\",\"authors\":\"Barkha Baloda, J. Kumar\",\"doi\":\"10.1142/s1005386723000342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The inclusion ideal graph [Formula: see text] of a semigroup [Formula: see text] is an undirected simple graph whose vertices are all the nontrivial left ideals of [Formula: see text] and two distinct left ideals [Formula: see text], [Formula: see text] are adjacent if and only if either [Formula: see text] or [Formula: see text]. The purpose of this paper is to study algebraic properties of the semigroup [Formula: see text] as well as graph theoretic properties of [Formula: see text]. We investigate the connectedness of [Formula: see text] and show that the diameter of [Formula: see text] is at most 3 if it is connected. We also obtain a necessary and sufficient condition of [Formula: see text] such that the clique number of [Formula: see text] is the number of minimal left ideals of [Formula: see text]. Further, various graph invariants of [Formula: see text], viz. perfectness, planarity, girth, etc., are discussed. For a completely simple semigroup [Formula: see text], we investigate properties of [Formula: see text] including its independence number and matching number. Finally, we obtain the automorphism group of [Formula: see text].\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1005386723000342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386723000342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

半群的包含理想图[公式:见文]是一个无向简单图,其顶点是[公式:见文]的所有非平凡左理想和两个不同的左理想[公式:见文],[公式:见文]相邻,当且仅当[公式:见文]或[公式:见文]。本文的目的是研究半群[公式:见文]的代数性质以及[公式:见文]的图论性质。我们研究了[Formula: see text]的连通性,并证明了[Formula: see text]的直径在连通的情况下不超过3。我们还得到了[公式:见文]的一个充要条件,使得[公式:见文]的团数是[公式:见文]的最小左理想数。进一步讨论了[公式:见文]的各种图不变量,即完备性、平面性、周长等。对于一个完全简单半群[公式:见文],我们研究了[公式:见文]的性质,包括它的独立数和匹配数。最后,我们得到了[公式:见文]的自同构群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the Inclusion Ideal Graph of Semigroups
The inclusion ideal graph [Formula: see text] of a semigroup [Formula: see text] is an undirected simple graph whose vertices are all the nontrivial left ideals of [Formula: see text] and two distinct left ideals [Formula: see text], [Formula: see text] are adjacent if and only if either [Formula: see text] or [Formula: see text]. The purpose of this paper is to study algebraic properties of the semigroup [Formula: see text] as well as graph theoretic properties of [Formula: see text]. We investigate the connectedness of [Formula: see text] and show that the diameter of [Formula: see text] is at most 3 if it is connected. We also obtain a necessary and sufficient condition of [Formula: see text] such that the clique number of [Formula: see text] is the number of minimal left ideals of [Formula: see text]. Further, various graph invariants of [Formula: see text], viz. perfectness, planarity, girth, etc., are discussed. For a completely simple semigroup [Formula: see text], we investigate properties of [Formula: see text] including its independence number and matching number. Finally, we obtain the automorphism group of [Formula: see text].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信