{"title":"z4 -线性类目标码的代数译码","authors":"K. Ranto","doi":"10.1109/18.868490","DOIUrl":null,"url":null,"abstract":"The Z/sub 4/-linear Goethals-like code of length 2/sup m/ has 2/sup 2m+1-3m-2/ codewords and minimum Lee distance 8 for any odd integer m/spl ges/3. We present an algebraic decoding algorithm for all Z/sub 4/-linear Goethals-like codes C/sub k/ introduced by Helleseth et al.(1995, 1996). We use Dickson polynomials and their properties to solve the syndrome equations.","PeriodicalId":13250,"journal":{"name":"IEEE Trans. Inf. Theory","volume":"42 1","pages":"2193-2197"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"On algebraic decoding of the Z4-linear Goethals-like codes\",\"authors\":\"K. Ranto\",\"doi\":\"10.1109/18.868490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Z/sub 4/-linear Goethals-like code of length 2/sup m/ has 2/sup 2m+1-3m-2/ codewords and minimum Lee distance 8 for any odd integer m/spl ges/3. We present an algebraic decoding algorithm for all Z/sub 4/-linear Goethals-like codes C/sub k/ introduced by Helleseth et al.(1995, 1996). We use Dickson polynomials and their properties to solve the syndrome equations.\",\"PeriodicalId\":13250,\"journal\":{\"name\":\"IEEE Trans. Inf. Theory\",\"volume\":\"42 1\",\"pages\":\"2193-2197\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Trans. Inf. Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/18.868490\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Inf. Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/18.868490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On algebraic decoding of the Z4-linear Goethals-like codes
The Z/sub 4/-linear Goethals-like code of length 2/sup m/ has 2/sup 2m+1-3m-2/ codewords and minimum Lee distance 8 for any odd integer m/spl ges/3. We present an algebraic decoding algorithm for all Z/sub 4/-linear Goethals-like codes C/sub k/ introduced by Helleseth et al.(1995, 1996). We use Dickson polynomials and their properties to solve the syndrome equations.