利用机器学习算法预测露天矿抛丸性能

IF 1.8 Q3 MINING & MINERAL PROCESSING
Sheo Shankar Rai, V. Murthy, Rahul Kumar, M. Maniteja, Ashutosh Kumar Singh
{"title":"利用机器学习算法预测露天矿抛丸性能","authors":"Sheo Shankar Rai, V. Murthy, Rahul Kumar, M. Maniteja, Ashutosh Kumar Singh","doi":"10.1080/25726668.2022.2078090","DOIUrl":null,"url":null,"abstract":"ABSTRACT Overburden removal is a major activity of surface coal mining and accounts for over 60–70% of the costs. Cast blasting is integral to overburden removal using draglines. Knowledge of cast blasting was combined with data analytics and machine learning algorithms to predict cast blast percentage. In a typical study, the cast percentage is predicted as a function of key input variables, namely (1) height to burden (H/b) ratio, (2) height to width (H/W) ratio, (3) length to width (L/W) ratio, (4) effective in-hole explosive density (de – te/m3), (5) powder factor (PF) (m3/kg – volume of rock broken per kg of explosive), and (6) average delay per unit width of burden (ms/m). Random forest algorithm was used under five-fold cross-validation with 68 datasets split into 57 for training and 11 for testing purposes. The model produced an R 2 value of 69.16% and 67.37% respectively on the training and testing data.","PeriodicalId":44166,"journal":{"name":"Mining Technology-Transactions of the Institutions of Mining and Metallurgy","volume":"20 1","pages":"191 - 209"},"PeriodicalIF":1.8000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Using machine learning algorithms to predict cast blasting performance in surface mining\",\"authors\":\"Sheo Shankar Rai, V. Murthy, Rahul Kumar, M. Maniteja, Ashutosh Kumar Singh\",\"doi\":\"10.1080/25726668.2022.2078090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Overburden removal is a major activity of surface coal mining and accounts for over 60–70% of the costs. Cast blasting is integral to overburden removal using draglines. Knowledge of cast blasting was combined with data analytics and machine learning algorithms to predict cast blast percentage. In a typical study, the cast percentage is predicted as a function of key input variables, namely (1) height to burden (H/b) ratio, (2) height to width (H/W) ratio, (3) length to width (L/W) ratio, (4) effective in-hole explosive density (de – te/m3), (5) powder factor (PF) (m3/kg – volume of rock broken per kg of explosive), and (6) average delay per unit width of burden (ms/m). Random forest algorithm was used under five-fold cross-validation with 68 datasets split into 57 for training and 11 for testing purposes. The model produced an R 2 value of 69.16% and 67.37% respectively on the training and testing data.\",\"PeriodicalId\":44166,\"journal\":{\"name\":\"Mining Technology-Transactions of the Institutions of Mining and Metallurgy\",\"volume\":\"20 1\",\"pages\":\"191 - 209\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mining Technology-Transactions of the Institutions of Mining and Metallurgy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/25726668.2022.2078090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MINING & MINERAL PROCESSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mining Technology-Transactions of the Institutions of Mining and Metallurgy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/25726668.2022.2078090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 1

摘要

覆岩清除是露天采煤的一项主要工作,其成本占总成本的60-70%以上。抛丸爆破是利用拖缆清除覆盖层必不可少的一部分。将铸态爆破知识与数据分析和机器学习算法相结合,预测铸态爆破率。在一项典型研究中,预测浇注率是关键输入变量的函数,即:(1)高料比(H/b),(2)高宽比(H/W),(3)长宽比(L/W),(4)有效孔内炸药密度(de - te/m3),(5)粉末因子(PF) (m3/kg -每千克炸药破碎岩石的体积),(6)单位宽度的平均延迟(ms/m)。随机森林算法在五重交叉验证下使用,68个数据集分为57个用于训练,11个用于测试。模型对训练数据和测试数据的r2值分别为69.16%和67.37%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using machine learning algorithms to predict cast blasting performance in surface mining
ABSTRACT Overburden removal is a major activity of surface coal mining and accounts for over 60–70% of the costs. Cast blasting is integral to overburden removal using draglines. Knowledge of cast blasting was combined with data analytics and machine learning algorithms to predict cast blast percentage. In a typical study, the cast percentage is predicted as a function of key input variables, namely (1) height to burden (H/b) ratio, (2) height to width (H/W) ratio, (3) length to width (L/W) ratio, (4) effective in-hole explosive density (de – te/m3), (5) powder factor (PF) (m3/kg – volume of rock broken per kg of explosive), and (6) average delay per unit width of burden (ms/m). Random forest algorithm was used under five-fold cross-validation with 68 datasets split into 57 for training and 11 for testing purposes. The model produced an R 2 value of 69.16% and 67.37% respectively on the training and testing data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
5
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信