{"title":"未混合和Cohen-Macaulay加权定向Kőnig图","authors":"Yuriko Pitones, E. Reyes, R. Villarreal","doi":"10.1556/012.2021.58.3.1499","DOIUrl":null,"url":null,"abstract":"Let D be a weighted oriented graph, whose underlying graph is G, and let I (D) be its edge ideal. If G has no 3-, 5-, or 7-cycles, or G is Kőnig, we characterize when I (D) is unmixed. If G has no 3- or 5-cycles, or G is Kőnig, we characterize when I (D) is Cohen–Macaulay. We prove that I (D) is unmixed if and only if I (D) is Cohen–Macaulay when G has girth greater than 7 or G is Kőnig and has no 4-cycles.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Unmixed and Cohen–Macaulay Weighted Oriented Kőnig Graphs\",\"authors\":\"Yuriko Pitones, E. Reyes, R. Villarreal\",\"doi\":\"10.1556/012.2021.58.3.1499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let D be a weighted oriented graph, whose underlying graph is G, and let I (D) be its edge ideal. If G has no 3-, 5-, or 7-cycles, or G is Kőnig, we characterize when I (D) is unmixed. If G has no 3- or 5-cycles, or G is Kőnig, we characterize when I (D) is Cohen–Macaulay. We prove that I (D) is unmixed if and only if I (D) is Cohen–Macaulay when G has girth greater than 7 or G is Kőnig and has no 4-cycles.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1556/012.2021.58.3.1499\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1556/012.2021.58.3.1499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unmixed and Cohen–Macaulay Weighted Oriented Kőnig Graphs
Let D be a weighted oriented graph, whose underlying graph is G, and let I (D) be its edge ideal. If G has no 3-, 5-, or 7-cycles, or G is Kőnig, we characterize when I (D) is unmixed. If G has no 3- or 5-cycles, or G is Kőnig, we characterize when I (D) is Cohen–Macaulay. We prove that I (D) is unmixed if and only if I (D) is Cohen–Macaulay when G has girth greater than 7 or G is Kőnig and has no 4-cycles.