未混合和Cohen-Macaulay加权定向Kőnig图

IF 0.4 4区 数学 Q4 MATHEMATICS
Yuriko Pitones, E. Reyes, R. Villarreal
{"title":"未混合和Cohen-Macaulay加权定向Kőnig图","authors":"Yuriko Pitones, E. Reyes, R. Villarreal","doi":"10.1556/012.2021.58.3.1499","DOIUrl":null,"url":null,"abstract":"Let D be a weighted oriented graph, whose underlying graph is G, and let I (D) be its edge ideal. If G has no 3-, 5-, or 7-cycles, or G is Kőnig, we characterize when I (D) is unmixed. If G has no 3- or 5-cycles, or G is Kőnig, we characterize when I (D) is Cohen–Macaulay. We prove that I (D) is unmixed if and only if I (D) is Cohen–Macaulay when G has girth greater than 7 or G is Kőnig and has no 4-cycles.","PeriodicalId":51187,"journal":{"name":"Studia Scientiarum Mathematicarum Hungarica","volume":"25 5 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2019-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Unmixed and Cohen–Macaulay Weighted Oriented Kőnig Graphs\",\"authors\":\"Yuriko Pitones, E. Reyes, R. Villarreal\",\"doi\":\"10.1556/012.2021.58.3.1499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let D be a weighted oriented graph, whose underlying graph is G, and let I (D) be its edge ideal. If G has no 3-, 5-, or 7-cycles, or G is Kőnig, we characterize when I (D) is unmixed. If G has no 3- or 5-cycles, or G is Kőnig, we characterize when I (D) is Cohen–Macaulay. We prove that I (D) is unmixed if and only if I (D) is Cohen–Macaulay when G has girth greater than 7 or G is Kőnig and has no 4-cycles.\",\"PeriodicalId\":51187,\"journal\":{\"name\":\"Studia Scientiarum Mathematicarum Hungarica\",\"volume\":\"25 5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2019-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Scientiarum Mathematicarum Hungarica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1556/012.2021.58.3.1499\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Scientiarum Mathematicarum Hungarica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1556/012.2021.58.3.1499","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9

摘要

设D为一个加权有向图,其底层图为G,设I (D)为其边理想。如果G没有3、5或7环,或者G为Kőnig,我们在I (D)未混合时进行表征。如果G没有3环或5环,或者G为Kőnig,我们在I (D)为Cohen-Macaulay时进行表征。证明当且仅当当G的周长大于7或G为Kőnig且不存在4环时,I (D)是Cohen-Macaulay时,I (D)是不混合的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unmixed and Cohen–Macaulay Weighted Oriented Kőnig Graphs
Let D be a weighted oriented graph, whose underlying graph is G, and let I (D) be its edge ideal. If G has no 3-, 5-, or 7-cycles, or G is Kőnig, we characterize when I (D) is unmixed. If G has no 3- or 5-cycles, or G is Kőnig, we characterize when I (D) is Cohen–Macaulay. We prove that I (D) is unmixed if and only if I (D) is Cohen–Macaulay when G has girth greater than 7 or G is Kőnig and has no 4-cycles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
19
审稿时长
>12 weeks
期刊介绍: The journal publishes original research papers on various fields of mathematics, e.g., algebra, algebraic geometry, analysis, combinatorics, dynamical systems, geometry, mathematical logic, mathematical statistics, number theory, probability theory, set theory, statistical physics and topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信