超稳定场和群

G. Cherlin , S. Shelah
{"title":"超稳定场和群","authors":"G. Cherlin ,&nbsp;S. Shelah","doi":"10.1016/0003-4843(80)90006-6","DOIUrl":null,"url":null,"abstract":"<div><p>We prove an indecomposability theorem for connected stable groups. Using this theorem we prove that all infinite superstable fields are algebraically closed, and we extend known results for ω-stable groups of Morley rank at most 3 to the corresponding class of superstable groups (Note: The logical notion of stability is unrelated to the notion of stability in finit group theory).</p></div>","PeriodicalId":100093,"journal":{"name":"Annals of Mathematical Logic","volume":"18 3","pages":"Pages 227-270"},"PeriodicalIF":0.0000,"publicationDate":"1980-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0003-4843(80)90006-6","citationCount":"81","resultStr":"{\"title\":\"Superstable fields and groups\",\"authors\":\"G. Cherlin ,&nbsp;S. Shelah\",\"doi\":\"10.1016/0003-4843(80)90006-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove an indecomposability theorem for connected stable groups. Using this theorem we prove that all infinite superstable fields are algebraically closed, and we extend known results for ω-stable groups of Morley rank at most 3 to the corresponding class of superstable groups (Note: The logical notion of stability is unrelated to the notion of stability in finit group theory).</p></div>\",\"PeriodicalId\":100093,\"journal\":{\"name\":\"Annals of Mathematical Logic\",\"volume\":\"18 3\",\"pages\":\"Pages 227-270\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1980-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0003-4843(80)90006-6\",\"citationCount\":\"81\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Mathematical Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0003484380900066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematical Logic","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0003484380900066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 81

摘要

证明了一类连通稳定群的不可分解定理。利用这一定理证明了所有无限超稳定场都是代数封闭的,并将Morley秩不超过3的ω-稳定群的已知结果推广到相应的超稳定群(注:稳定性的逻辑概念与有限群论中的稳定性概念无关)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Superstable fields and groups

We prove an indecomposability theorem for connected stable groups. Using this theorem we prove that all infinite superstable fields are algebraically closed, and we extend known results for ω-stable groups of Morley rank at most 3 to the corresponding class of superstable groups (Note: The logical notion of stability is unrelated to the notion of stability in finit group theory).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信