利用量子电路方法检测心脏病的量子 K-means 聚类方法。

Q2 Social Sciences
S S Kavitha, Narasimha Kaulgud
{"title":"利用量子电路方法检测心脏病的量子 K-means 聚类方法。","authors":"S S Kavitha, Narasimha Kaulgud","doi":"10.1007/s00500-022-07200-x","DOIUrl":null,"url":null,"abstract":"<p><p>The development of noisy intermediate- scale quantum computers is expected to signify the potential advantages of quantum computing over classical computing. This paper focuses on quantum paradigm usage to speed up unsupervised machine learning algorithms particularly the K-means clustering method. The main approach is to build a quantum circuit that performs the distance calculation required for the clustering process. This proposed technique is a collaboration of data mining techniques with quantum computation. Initially, extracted heart disease dataset is preprocessed and classical K-means clustering performance is evaluated. Later, the quantum concept is applied to the classical approach of the clustering algorithm. The comparative analysis is performed between quantum and classical processing to check performance metrics.</p>","PeriodicalId":39920,"journal":{"name":"American Journal of Jurisprudence","volume":"1 1","pages":"1-14"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9152652/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quantum K-means clustering method for detecting heart disease using quantum circuit approach.\",\"authors\":\"S S Kavitha, Narasimha Kaulgud\",\"doi\":\"10.1007/s00500-022-07200-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The development of noisy intermediate- scale quantum computers is expected to signify the potential advantages of quantum computing over classical computing. This paper focuses on quantum paradigm usage to speed up unsupervised machine learning algorithms particularly the K-means clustering method. The main approach is to build a quantum circuit that performs the distance calculation required for the clustering process. This proposed technique is a collaboration of data mining techniques with quantum computation. Initially, extracted heart disease dataset is preprocessed and classical K-means clustering performance is evaluated. Later, the quantum concept is applied to the classical approach of the clustering algorithm. The comparative analysis is performed between quantum and classical processing to check performance metrics.</p>\",\"PeriodicalId\":39920,\"journal\":{\"name\":\"American Journal of Jurisprudence\",\"volume\":\"1 1\",\"pages\":\"1-14\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9152652/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Jurisprudence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00500-022-07200-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Jurisprudence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00500-022-07200-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

嘈杂的中型量子计算机的开发有望标志着量子计算相对于经典计算的潜在优势。本文的重点是利用量子范式加速无监督机器学习算法,特别是 K-means 聚类方法。主要方法是构建一个量子电路,执行聚类过程所需的距离计算。这项建议的技术是数据挖掘技术与量子计算的结合。首先,对提取的心脏病数据集进行预处理,并对经典的 K-means 聚类性能进行评估。随后,量子概念被应用到经典的聚类算法中。对量子处理和经典处理进行比较分析,以检查性能指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum K-means clustering method for detecting heart disease using quantum circuit approach.

The development of noisy intermediate- scale quantum computers is expected to signify the potential advantages of quantum computing over classical computing. This paper focuses on quantum paradigm usage to speed up unsupervised machine learning algorithms particularly the K-means clustering method. The main approach is to build a quantum circuit that performs the distance calculation required for the clustering process. This proposed technique is a collaboration of data mining techniques with quantum computation. Initially, extracted heart disease dataset is preprocessed and classical K-means clustering performance is evaluated. Later, the quantum concept is applied to the classical approach of the clustering algorithm. The comparative analysis is performed between quantum and classical processing to check performance metrics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
American Journal of Jurisprudence
American Journal of Jurisprudence Social Sciences-Law
CiteScore
0.90
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信