多孔介质中退化两相流的有限元方法。第一部分:举止得体

IF 3.8 2区 数学 Q1 MATHEMATICS
V. Girault, B. Rivière, L. Cappanera
{"title":"多孔介质中退化两相流的有限元方法。第一部分:举止得体","authors":"V. Girault, B. Rivière, L. Cappanera","doi":"10.1515/JNMA-2020-0004","DOIUrl":null,"url":null,"abstract":"Abstract A finite element method with mass-lumping and flux upwinding is formulated for solving the immiscible two-phase flow problem in porous media. The method approximates directly thewetting phase pressure and saturation, which are the primary unknowns. The discrete saturation satisfies a maximum principle. Stability of the scheme and existence of a solution are established.","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2021-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A finite element method for degenerate two-phase flow in porous media. Part I: Well-posedness\",\"authors\":\"V. Girault, B. Rivière, L. Cappanera\",\"doi\":\"10.1515/JNMA-2020-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A finite element method with mass-lumping and flux upwinding is formulated for solving the immiscible two-phase flow problem in porous media. The method approximates directly thewetting phase pressure and saturation, which are the primary unknowns. The discrete saturation satisfies a maximum principle. Stability of the scheme and existence of a solution are established.\",\"PeriodicalId\":50109,\"journal\":{\"name\":\"Journal of Numerical Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2021-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/JNMA-2020-0004\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/JNMA-2020-0004","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

摘要建立了求解多孔介质中非混相两相流问题的质量集总和通量上绕的有限元方法。该方法直接逼近润湿相压力和饱和度,这是主要的未知数。离散饱和满足最大值原则。证明了方案的稳定性和解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A finite element method for degenerate two-phase flow in porous media. Part I: Well-posedness
Abstract A finite element method with mass-lumping and flux upwinding is formulated for solving the immiscible two-phase flow problem in porous media. The method approximates directly thewetting phase pressure and saturation, which are the primary unknowns. The discrete saturation satisfies a maximum principle. Stability of the scheme and existence of a solution are established.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
3.30%
发文量
17
审稿时长
>12 weeks
期刊介绍: The Journal of Numerical Mathematics (formerly East-West Journal of Numerical Mathematics) contains high-quality papers featuring contemporary research in all areas of Numerical Mathematics. This includes the development, analysis, and implementation of new and innovative methods in Numerical Linear Algebra, Numerical Analysis, Optimal Control/Optimization, and Scientific Computing. The journal will also publish applications-oriented papers with significant mathematical content in computational fluid dynamics and other areas of computational engineering, finance, and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信