基于最小成本多路分割的运动轨迹分割

M. Keuper, Bjoern Andres, T. Brox
{"title":"基于最小成本多路分割的运动轨迹分割","authors":"M. Keuper, Bjoern Andres, T. Brox","doi":"10.1109/ICCV.2015.374","DOIUrl":null,"url":null,"abstract":"For the segmentation of moving objects in videos, the analysis of long-term point trajectories has been very popular recently. In this paper, we formulate the segmentation of a video sequence based on point trajectories as a minimum cost multicut problem. Unlike the commonly used spectral clustering formulation, the minimum cost multicut formulation gives natural rise to optimize not only for a cluster assignment but also for the number of clusters while allowing for varying cluster sizes. In this setup, we provide a method to create a long-term point trajectory graph with attractive and repulsive binary terms and outperform state-of-the-art methods based on spectral clustering on the FBMS-59 dataset and on the motion subtask of the VSB100 dataset.","PeriodicalId":6633,"journal":{"name":"2015 IEEE International Conference on Computer Vision (ICCV)","volume":"16 1","pages":"3271-3279"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"188","resultStr":"{\"title\":\"Motion Trajectory Segmentation via Minimum Cost Multicuts\",\"authors\":\"M. Keuper, Bjoern Andres, T. Brox\",\"doi\":\"10.1109/ICCV.2015.374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the segmentation of moving objects in videos, the analysis of long-term point trajectories has been very popular recently. In this paper, we formulate the segmentation of a video sequence based on point trajectories as a minimum cost multicut problem. Unlike the commonly used spectral clustering formulation, the minimum cost multicut formulation gives natural rise to optimize not only for a cluster assignment but also for the number of clusters while allowing for varying cluster sizes. In this setup, we provide a method to create a long-term point trajectory graph with attractive and repulsive binary terms and outperform state-of-the-art methods based on spectral clustering on the FBMS-59 dataset and on the motion subtask of the VSB100 dataset.\",\"PeriodicalId\":6633,\"journal\":{\"name\":\"2015 IEEE International Conference on Computer Vision (ICCV)\",\"volume\":\"16 1\",\"pages\":\"3271-3279\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"188\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2015.374\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2015.374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 188

摘要

对于视频中运动物体的分割,长期点轨迹分析是近年来非常流行的一种方法。在本文中,我们将基于点轨迹的视频序列分割作为一个最小代价多切问题。与常用的光谱聚类公式不同,最小成本多切口公式不仅可以优化聚类分配,还可以优化聚类数量,同时允许不同的聚类大小。在此设置中,我们提供了一种方法来创建具有吸引和排斥二元项的长期点轨迹图,并且优于基于FBMS-59数据集和VSB100数据集的运动子任务的基于谱聚类的最先进方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Motion Trajectory Segmentation via Minimum Cost Multicuts
For the segmentation of moving objects in videos, the analysis of long-term point trajectories has been very popular recently. In this paper, we formulate the segmentation of a video sequence based on point trajectories as a minimum cost multicut problem. Unlike the commonly used spectral clustering formulation, the minimum cost multicut formulation gives natural rise to optimize not only for a cluster assignment but also for the number of clusters while allowing for varying cluster sizes. In this setup, we provide a method to create a long-term point trajectory graph with attractive and repulsive binary terms and outperform state-of-the-art methods based on spectral clustering on the FBMS-59 dataset and on the motion subtask of the VSB100 dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信