B2 FeCo1-XVX和Fe1-XCoVX体系的结构和稳定性:簇扩展方法

TM Ledwaba, RG Diale, P. Ngoepe, H. Chauke
{"title":"B2 FeCo1-XVX和Fe1-XCoVX体系的结构和稳定性:簇扩展方法","authors":"TM Ledwaba, RG Diale, P. Ngoepe, H. Chauke","doi":"10.36303/satnt.2021cosaami.19","DOIUrl":null,"url":null,"abstract":"Fe-Co alloys are considered good candidates for high-temperature applications due to their high saturation magnetisation and Curie temperature. However, these alloys show low levels of ductility at room temperature. In this study, cluster expansion was employed to probe the thermodynamic stability of the FeCo1-XVX and Fe1-XCoVX alloys. Ten new stable structures were found from both FeCo1-XVX and Fe1-XCoVX systems. Their stability was observed by deducing the heats of formation, and it was found that VFeCo2 and VFe2Co (P4/mmm) are the most thermodynamically stable phases. The results also showed that vanadium prefers the Co-site rather than the Fe-site substitution. The calculated Pugh’s ratio and Poisson’s ratio confirm that alloying with V effectively improved the ductility. It was also found that VFeCo2, VFe2Co, VFe4Co3 and FeCo showed a positive shear modulus condition of stability for the structures. The ternary addition of V in the FeCo system resulted in enhanced magnetic properties. Thus, ternary systems with vanadium addition enhance the ductility of the Fe-Co systems, and these alloys could be used to develop future magnets.","PeriodicalId":22035,"journal":{"name":"Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural and stability of B2 FeCo1-XVX and Fe1-XCoVX systems: Cluster expansion approach\",\"authors\":\"TM Ledwaba, RG Diale, P. Ngoepe, H. Chauke\",\"doi\":\"10.36303/satnt.2021cosaami.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fe-Co alloys are considered good candidates for high-temperature applications due to their high saturation magnetisation and Curie temperature. However, these alloys show low levels of ductility at room temperature. In this study, cluster expansion was employed to probe the thermodynamic stability of the FeCo1-XVX and Fe1-XCoVX alloys. Ten new stable structures were found from both FeCo1-XVX and Fe1-XCoVX systems. Their stability was observed by deducing the heats of formation, and it was found that VFeCo2 and VFe2Co (P4/mmm) are the most thermodynamically stable phases. The results also showed that vanadium prefers the Co-site rather than the Fe-site substitution. The calculated Pugh’s ratio and Poisson’s ratio confirm that alloying with V effectively improved the ductility. It was also found that VFeCo2, VFe2Co, VFe4Co3 and FeCo showed a positive shear modulus condition of stability for the structures. The ternary addition of V in the FeCo system resulted in enhanced magnetic properties. Thus, ternary systems with vanadium addition enhance the ductility of the Fe-Co systems, and these alloys could be used to develop future magnets.\",\"PeriodicalId\":22035,\"journal\":{\"name\":\"Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36303/satnt.2021cosaami.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36303/satnt.2021cosaami.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

铁钴合金由于其高饱和磁化和居里温度被认为是高温应用的良好候选者。然而,这些合金在室温下表现出低水平的延展性。在本研究中,采用团簇扩展法来考察feeco1 - xvx和Fe1-XCoVX合金的热力学稳定性。在FeCo1-XVX和Fe1-XCoVX体系中均发现了10个新的稳定结构。通过推导生成热来观察它们的稳定性,发现VFeCo2和VFe2Co (P4/mmm)是最稳定的相。结果还表明,钒更倾向于Co-site取代而不是Fe-site取代。通过Pugh′s比和泊松′s比的计算,证实了V合金化有效地提高了塑性。VFeCo2、VFe2Co、VFe4Co3和FeCo均表现出正剪切模量条件。在FeCo体系中三元加入V可以增强磁性能。因此,加入钒的三元体系提高了Fe-Co体系的延展性,这些合金可用于开发未来的磁体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural and stability of B2 FeCo1-XVX and Fe1-XCoVX systems: Cluster expansion approach
Fe-Co alloys are considered good candidates for high-temperature applications due to their high saturation magnetisation and Curie temperature. However, these alloys show low levels of ductility at room temperature. In this study, cluster expansion was employed to probe the thermodynamic stability of the FeCo1-XVX and Fe1-XCoVX alloys. Ten new stable structures were found from both FeCo1-XVX and Fe1-XCoVX systems. Their stability was observed by deducing the heats of formation, and it was found that VFeCo2 and VFe2Co (P4/mmm) are the most thermodynamically stable phases. The results also showed that vanadium prefers the Co-site rather than the Fe-site substitution. The calculated Pugh’s ratio and Poisson’s ratio confirm that alloying with V effectively improved the ductility. It was also found that VFeCo2, VFe2Co, VFe4Co3 and FeCo showed a positive shear modulus condition of stability for the structures. The ternary addition of V in the FeCo system resulted in enhanced magnetic properties. Thus, ternary systems with vanadium addition enhance the ductility of the Fe-Co systems, and these alloys could be used to develop future magnets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信