S. Srinath, Berkin Ilbeyi, Mingxing Tan, Gai Liu, Zhiru Zhang, C. Batten
{"title":"迭代间循环依赖模式的体系结构专门化","authors":"S. Srinath, Berkin Ilbeyi, Mingxing Tan, Gai Liu, Zhiru Zhang, C. Batten","doi":"10.1109/MICRO.2014.31","DOIUrl":null,"url":null,"abstract":"Hardware specialization is an increasingly common technique to enable improved performance and energy efficiency in spite of the diminished benefits of technology scaling. This paper proposes a new approach called explicit loop specialization (XLOOPS) based on the idea of elegantly encoding inter-iteration loop dependence patterns in the instruction set. XLOOPS supports a variety of inter-iteration data-and control-dependence patterns for both single and nested loops. The XLOOPS hardware/software abstraction requires only lightweight changes to a general-purpose compiler to generate XLOOPS binaries and enables executing these binaries on: (1) traditional micro architectures with minimal performance impact, (2) specialized micro architectures to improve performance and/or energy efficiency, and (3) adaptive micro architectures that can seamlessly migrate loops between traditional and specialized execution to dynamically trade-off performance vs. Energy efficiency. We evaluate XLOOPS using a vertically integrated research methodology and show compelling performance and energy efficiency improvements compared to both simple and complex general-purpose processors.","PeriodicalId":6591,"journal":{"name":"2014 47th Annual IEEE/ACM International Symposium on Microarchitecture","volume":"53 1","pages":"583-595"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Architectural Specialization for Inter-Iteration Loop Dependence Patterns\",\"authors\":\"S. Srinath, Berkin Ilbeyi, Mingxing Tan, Gai Liu, Zhiru Zhang, C. Batten\",\"doi\":\"10.1109/MICRO.2014.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hardware specialization is an increasingly common technique to enable improved performance and energy efficiency in spite of the diminished benefits of technology scaling. This paper proposes a new approach called explicit loop specialization (XLOOPS) based on the idea of elegantly encoding inter-iteration loop dependence patterns in the instruction set. XLOOPS supports a variety of inter-iteration data-and control-dependence patterns for both single and nested loops. The XLOOPS hardware/software abstraction requires only lightweight changes to a general-purpose compiler to generate XLOOPS binaries and enables executing these binaries on: (1) traditional micro architectures with minimal performance impact, (2) specialized micro architectures to improve performance and/or energy efficiency, and (3) adaptive micro architectures that can seamlessly migrate loops between traditional and specialized execution to dynamically trade-off performance vs. Energy efficiency. We evaluate XLOOPS using a vertically integrated research methodology and show compelling performance and energy efficiency improvements compared to both simple and complex general-purpose processors.\",\"PeriodicalId\":6591,\"journal\":{\"name\":\"2014 47th Annual IEEE/ACM International Symposium on Microarchitecture\",\"volume\":\"53 1\",\"pages\":\"583-595\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 47th Annual IEEE/ACM International Symposium on Microarchitecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MICRO.2014.31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 47th Annual IEEE/ACM International Symposium on Microarchitecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MICRO.2014.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Architectural Specialization for Inter-Iteration Loop Dependence Patterns
Hardware specialization is an increasingly common technique to enable improved performance and energy efficiency in spite of the diminished benefits of technology scaling. This paper proposes a new approach called explicit loop specialization (XLOOPS) based on the idea of elegantly encoding inter-iteration loop dependence patterns in the instruction set. XLOOPS supports a variety of inter-iteration data-and control-dependence patterns for both single and nested loops. The XLOOPS hardware/software abstraction requires only lightweight changes to a general-purpose compiler to generate XLOOPS binaries and enables executing these binaries on: (1) traditional micro architectures with minimal performance impact, (2) specialized micro architectures to improve performance and/or energy efficiency, and (3) adaptive micro architectures that can seamlessly migrate loops between traditional and specialized execution to dynamically trade-off performance vs. Energy efficiency. We evaluate XLOOPS using a vertically integrated research methodology and show compelling performance and energy efficiency improvements compared to both simple and complex general-purpose processors.