一些近亲群体的Ribes-Zalesskii属性

IF 0.5 Q3 MATHEMATICS
Gilbert Mantika, Narcisse Temate-Tangang, D. Tieudjo
{"title":"一些近亲群体的Ribes-Zalesskii属性","authors":"Gilbert Mantika, Narcisse Temate-Tangang, D. Tieudjo","doi":"10.5817/am2022-1-35","DOIUrl":null,"url":null,"abstract":". The profinite topology on any abstract group G , is one such that the fundamental system of neighborhoods of the identity is given by all its subgroups of finite index. We say that a group G has the Ribes-Zalesskii property of rank k , or is RZ k with k a natural number, if any product H 1 H 2 ··· H k of finitely generated subgroups H 1 ,H 2 , ··· ,H k is closed in the profinite topology on G . And a group is said to have the Ribes-Zalesskii property or is RZ if it is RZ k for any natural number k . In this paper we characterize groups which are RZ 2 . Consequently, we obtain condition under which a free product with amalgamation of two RZ 2 groups is RZ 2 . After observing that the Baumslag-Solitar groups BS ( m,n ) are RZ 2 and clearly RZ if m = n , we establish some suitable properties on the RZ 2 property for the case when m = − n . Finally, since any group BS ( m,n ) can be viewed as a HNN-extension, then we point out the Ribes-Zalesskii property of rank two on some HNN-extensions.","PeriodicalId":45191,"journal":{"name":"Archivum Mathematicum","volume":"38 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Ribes-Zalesskii property of some one relator groups\",\"authors\":\"Gilbert Mantika, Narcisse Temate-Tangang, D. Tieudjo\",\"doi\":\"10.5817/am2022-1-35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". The profinite topology on any abstract group G , is one such that the fundamental system of neighborhoods of the identity is given by all its subgroups of finite index. We say that a group G has the Ribes-Zalesskii property of rank k , or is RZ k with k a natural number, if any product H 1 H 2 ··· H k of finitely generated subgroups H 1 ,H 2 , ··· ,H k is closed in the profinite topology on G . And a group is said to have the Ribes-Zalesskii property or is RZ if it is RZ k for any natural number k . In this paper we characterize groups which are RZ 2 . Consequently, we obtain condition under which a free product with amalgamation of two RZ 2 groups is RZ 2 . After observing that the Baumslag-Solitar groups BS ( m,n ) are RZ 2 and clearly RZ if m = n , we establish some suitable properties on the RZ 2 property for the case when m = − n . Finally, since any group BS ( m,n ) can be viewed as a HNN-extension, then we point out the Ribes-Zalesskii property of rank two on some HNN-extensions.\",\"PeriodicalId\":45191,\"journal\":{\"name\":\"Archivum Mathematicum\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archivum Mathematicum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5817/am2022-1-35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archivum Mathematicum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5817/am2022-1-35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

。任意抽象群G上的无限拓扑,是恒等式的基本邻域系统是由它的所有有限指数子群给出的。我们说群G具有秩k的ribeszalesskii性质,或者rzk是一个自然数,如果有限生成的子群h1, h2,···,H k的乘积H 1 H 2···H k在G上的无限拓扑中是封闭的。一个群被称为Ribes-Zalesskii性质或者RZ如果它是rzk对于任意自然数k。本文对rz2群进行了刻画。由此,我们得到了两个rz2基团合并后的自由积为rz2的条件。在观察到Baumslag-Solitar群BS (m,n)为rz2,且m = n时明显为RZ后,我们建立了m = - n时rz2性质的一些合适性质。最后,由于任何群BS (m,n)都可以看作是hnn -扩展,因此我们指出了某些hnn -扩展上的二阶Ribes-Zalesskii性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Ribes-Zalesskii property of some one relator groups
. The profinite topology on any abstract group G , is one such that the fundamental system of neighborhoods of the identity is given by all its subgroups of finite index. We say that a group G has the Ribes-Zalesskii property of rank k , or is RZ k with k a natural number, if any product H 1 H 2 ··· H k of finitely generated subgroups H 1 ,H 2 , ··· ,H k is closed in the profinite topology on G . And a group is said to have the Ribes-Zalesskii property or is RZ if it is RZ k for any natural number k . In this paper we characterize groups which are RZ 2 . Consequently, we obtain condition under which a free product with amalgamation of two RZ 2 groups is RZ 2 . After observing that the Baumslag-Solitar groups BS ( m,n ) are RZ 2 and clearly RZ if m = n , we establish some suitable properties on the RZ 2 property for the case when m = − n . Finally, since any group BS ( m,n ) can be viewed as a HNN-extension, then we point out the Ribes-Zalesskii property of rank two on some HNN-extensions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archivum Mathematicum
Archivum Mathematicum MATHEMATICS-
CiteScore
0.70
自引率
16.70%
发文量
0
审稿时长
35 weeks
期刊介绍: Archivum Mathematicum is a mathematical journal which publishes exclusively scientific mathematical papers. The journal, founded in 1965, is published by the Department of Mathematics and Statistics of the Faculty of Science of Masaryk University. A review of each published paper appears in Mathematical Reviews and also in Zentralblatt für Mathematik. The journal is indexed by Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信