{"title":"在低分辨率、各向异性数据和晶体孪晶的情况下,MATE转运体的晶体学研究在结构确定方面存在困难。","authors":"J. Symerský, Yi Guo, Jimin Wang, Min Lu","doi":"10.1107/S1399004715016995","DOIUrl":null,"url":null,"abstract":"NorM from Neisseria gonorrhoeae (NorM-NG) belongs to the multidrug and toxic compound extrusion (MATE) family of membrane-transport proteins, which can extrude cytotoxic chemicals across cell membranes and confer multidrug resistance. Here, the structure determination of NorM-NG is described, which had been hampered by low resolution (∼ 4 Å), data anisotropy and pseudo-merohedral twinning. The crystal structure was solved using molecular replacement and was corroborated by conducting a difference Fourier analysis. The NorM-NG structure displays an extracellular-facing conformation, similar to that of NorM-NG bound to a crystallization chaperone. The approaches taken to determine the NorM-NG structure and the lessons learned from this study are discussed, which may be useful for analyzing X-ray diffraction data with similar shortcomings.","PeriodicalId":6895,"journal":{"name":"Acta Crystallographica Section D: Biological Crystallography","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Crystallographic study of a MATE transporter presents a difficult case in structure determination with low-resolution, anisotropic data and crystal twinning.\",\"authors\":\"J. Symerský, Yi Guo, Jimin Wang, Min Lu\",\"doi\":\"10.1107/S1399004715016995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"NorM from Neisseria gonorrhoeae (NorM-NG) belongs to the multidrug and toxic compound extrusion (MATE) family of membrane-transport proteins, which can extrude cytotoxic chemicals across cell membranes and confer multidrug resistance. Here, the structure determination of NorM-NG is described, which had been hampered by low resolution (∼ 4 Å), data anisotropy and pseudo-merohedral twinning. The crystal structure was solved using molecular replacement and was corroborated by conducting a difference Fourier analysis. The NorM-NG structure displays an extracellular-facing conformation, similar to that of NorM-NG bound to a crystallization chaperone. The approaches taken to determine the NorM-NG structure and the lessons learned from this study are discussed, which may be useful for analyzing X-ray diffraction data with similar shortcomings.\",\"PeriodicalId\":6895,\"journal\":{\"name\":\"Acta Crystallographica Section D: Biological Crystallography\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Crystallographica Section D: Biological Crystallography\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1107/S1399004715016995\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section D: Biological Crystallography","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1107/S1399004715016995","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Crystallographic study of a MATE transporter presents a difficult case in structure determination with low-resolution, anisotropic data and crystal twinning.
NorM from Neisseria gonorrhoeae (NorM-NG) belongs to the multidrug and toxic compound extrusion (MATE) family of membrane-transport proteins, which can extrude cytotoxic chemicals across cell membranes and confer multidrug resistance. Here, the structure determination of NorM-NG is described, which had been hampered by low resolution (∼ 4 Å), data anisotropy and pseudo-merohedral twinning. The crystal structure was solved using molecular replacement and was corroborated by conducting a difference Fourier analysis. The NorM-NG structure displays an extracellular-facing conformation, similar to that of NorM-NG bound to a crystallization chaperone. The approaches taken to determine the NorM-NG structure and the lessons learned from this study are discussed, which may be useful for analyzing X-ray diffraction data with similar shortcomings.
期刊介绍:
Acta Crystallographica Section D welcomes the submission of articles covering any aspect of structural biology, with a particular emphasis on the structures of biological macromolecules or the methods used to determine them.
Reports on new structures of biological importance may address the smallest macromolecules to the largest complex molecular machines. These structures may have been determined using any structural biology technique including crystallography, NMR, cryoEM and/or other techniques. The key criterion is that such articles must present significant new insights into biological, chemical or medical sciences. The inclusion of complementary data that support the conclusions drawn from the structural studies (such as binding studies, mass spectrometry, enzyme assays, or analysis of mutants or other modified forms of biological macromolecule) is encouraged.
Methods articles may include new approaches to any aspect of biological structure determination or structure analysis but will only be accepted where they focus on new methods that are demonstrated to be of general applicability and importance to structural biology. Articles describing particularly difficult problems in structural biology are also welcomed, if the analysis would provide useful insights to others facing similar problems.