单查询量子区分符的经典模拟

Andrej Bogdanov, T. Cheung, K. Dinesh, John C.S. Lui
{"title":"单查询量子区分符的经典模拟","authors":"Andrej Bogdanov, T. Cheung, K. Dinesh, John C.S. Lui","doi":"10.4230/LIPIcs.APPROX/RANDOM.2023.43","DOIUrl":null,"url":null,"abstract":"We study the relative advantage of classical and quantum distinguishers of bounded query complexity over n -bit strings, focusing on the case of a single quantum query. A construction of Aaronson and Ambainis (STOC 2015) yields a pair of distributions that is ε -distinguishable by a one-query quantum algorithm, but O ( εk/ √ n )-indistinguishable by any non-adaptive k -query classical algorithm. We show that every pair of distributions that is ε -distinguishable by a one-query quantum algorithm is distinguishable with k classical queries and (1) advantage min { Ω( ε p k/n )) , Ω( ε 2 k 2 /n ) } non-adaptively (i.e., in one round), and (2) advantage Ω( ε 2 k/ √ n log n ) in two rounds. As part of our analysis, we introduce a general method for converting unbiased estimators into distinguishers.","PeriodicalId":11639,"journal":{"name":"Electron. Colloquium Comput. Complex.","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Classical simulation of one-query quantum distinguishers\",\"authors\":\"Andrej Bogdanov, T. Cheung, K. Dinesh, John C.S. Lui\",\"doi\":\"10.4230/LIPIcs.APPROX/RANDOM.2023.43\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the relative advantage of classical and quantum distinguishers of bounded query complexity over n -bit strings, focusing on the case of a single quantum query. A construction of Aaronson and Ambainis (STOC 2015) yields a pair of distributions that is ε -distinguishable by a one-query quantum algorithm, but O ( εk/ √ n )-indistinguishable by any non-adaptive k -query classical algorithm. We show that every pair of distributions that is ε -distinguishable by a one-query quantum algorithm is distinguishable with k classical queries and (1) advantage min { Ω( ε p k/n )) , Ω( ε 2 k 2 /n ) } non-adaptively (i.e., in one round), and (2) advantage Ω( ε 2 k/ √ n log n ) in two rounds. As part of our analysis, we introduce a general method for converting unbiased estimators into distinguishers.\",\"PeriodicalId\":11639,\"journal\":{\"name\":\"Electron. Colloquium Comput. Complex.\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electron. Colloquium Comput. Complex.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.43\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Colloquium Comput. Complex.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们研究了n位字符串上有界查询复杂度的经典区分符和量子区分符的相对优势,重点研究了单个量子查询的情况。Aaronson和Ambainis (STOC 2015)的构造得到了一对分布,ε -可被单查询量子算法区分,但O (εk/√n)-无法被任何非自适应k -查询经典算法区分。我们证明了每一对由单查询量子算法ε -可分辨的分布都可以用k个经典查询和(1)优势min {Ω(ε p k/n)), Ω(ε 2 k 2 /n)}非自适应(即一轮)和(2)优势Ω(ε 2 k/√n log n)在两轮中区分。作为分析的一部分,我们介绍了将无偏估计量转换为区分量的一般方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classical simulation of one-query quantum distinguishers
We study the relative advantage of classical and quantum distinguishers of bounded query complexity over n -bit strings, focusing on the case of a single quantum query. A construction of Aaronson and Ambainis (STOC 2015) yields a pair of distributions that is ε -distinguishable by a one-query quantum algorithm, but O ( εk/ √ n )-indistinguishable by any non-adaptive k -query classical algorithm. We show that every pair of distributions that is ε -distinguishable by a one-query quantum algorithm is distinguishable with k classical queries and (1) advantage min { Ω( ε p k/n )) , Ω( ε 2 k 2 /n ) } non-adaptively (i.e., in one round), and (2) advantage Ω( ε 2 k/ √ n log n ) in two rounds. As part of our analysis, we introduce a general method for converting unbiased estimators into distinguishers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信