数字,例如神谕和定点

IF 0.3 Q4 MATHEMATICS, APPLIED
M. Faizrahmanov
{"title":"数字,例如神谕和定点","authors":"M. Faizrahmanov","doi":"10.3233/com-210387","DOIUrl":null,"url":null,"abstract":"The Arslanov completeness criterion says that a c.e. set A is Turing complete if and only there exists an A-computable function f without fixed points, i.e. a function f such that W f ( x ) ≠ W x for each integer x. Recently, Barendregt and Terwijn proved that the completeness criterion remains true if we replace the Gödel numbering x ↦ W x with an arbitrary precomplete computable numbering. In this paper, we prove criteria for noncomputability and highness of c.e. sets in terms of (pre)complete computable numberings and fixed point properties. We also find some precomplete and weakly precomplete numberings of arbitrary families computable relative to Turing complete and non-computable c.e. oracles respectively.","PeriodicalId":42452,"journal":{"name":"Computability-The Journal of the Association CiE","volume":"5 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numberings, c.e. oracles, and fixed points\",\"authors\":\"M. Faizrahmanov\",\"doi\":\"10.3233/com-210387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Arslanov completeness criterion says that a c.e. set A is Turing complete if and only there exists an A-computable function f without fixed points, i.e. a function f such that W f ( x ) ≠ W x for each integer x. Recently, Barendregt and Terwijn proved that the completeness criterion remains true if we replace the Gödel numbering x ↦ W x with an arbitrary precomplete computable numbering. In this paper, we prove criteria for noncomputability and highness of c.e. sets in terms of (pre)complete computable numberings and fixed point properties. We also find some precomplete and weakly precomplete numberings of arbitrary families computable relative to Turing complete and non-computable c.e. oracles respectively.\",\"PeriodicalId\":42452,\"journal\":{\"name\":\"Computability-The Journal of the Association CiE\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computability-The Journal of the Association CiE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/com-210387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computability-The Journal of the Association CiE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/com-210387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

Arslanov完备性判据指出一个c.e.集合a是图灵完备的,当且仅当存在一个没有不动点的a -可计算函数f,即对于每一个整数x,存在一个使得W f (x)≠W x的函数f。最近,Barendregt和Terwijn证明了当我们用一个任意的预完备可计算的编号代替Gödel编号x × W x时,完备性判据仍然成立。本文利用(预)完全可计算编号和不动点性质证明了c.e.集的不可计算性和高度性准则。我们还分别找到了相对于图灵完备和非图灵完备的任意族的预完备和弱预完备编号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numberings, c.e. oracles, and fixed points
The Arslanov completeness criterion says that a c.e. set A is Turing complete if and only there exists an A-computable function f without fixed points, i.e. a function f such that W f ( x ) ≠ W x for each integer x. Recently, Barendregt and Terwijn proved that the completeness criterion remains true if we replace the Gödel numbering x ↦ W x with an arbitrary precomplete computable numbering. In this paper, we prove criteria for noncomputability and highness of c.e. sets in terms of (pre)complete computable numberings and fixed point properties. We also find some precomplete and weakly precomplete numberings of arbitrary families computable relative to Turing complete and non-computable c.e. oracles respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
16.70%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信