{"title":"基于标记路径和小片段频率的特征向量推断化学结构","authors":"T. Akutsu, Daiji Fukagawa","doi":"10.1142/9781860947995_0019","DOIUrl":null,"url":null,"abstract":"This paper proposes algorithms for inferring a chemical structure from a feature vector based on frequency of labeled paths and small fragments, where this inference problem has a potential application to drug design. In this paper, chemical structures are modeled as trees or tree-like structures. It is shown that the inference problems for these kinds of structures can be solved in polynomial time using dynamic programming-based algorithms. Since these algorithms are not practical, a branchand-bound type algorithm is also proposed. The result of computational experiment suggests that the algorithm can solve the inference problem in a few or few-tens of seconds for moderate size chemical compounds.","PeriodicalId":74513,"journal":{"name":"Proceedings of the ... Asia-Pacific bioinformatics conference","volume":"44 1","pages":"165-174"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Inferring a Chemical Structure from a Feature Vector Based on Frequency of Labeled Paths and Small Fragments\",\"authors\":\"T. Akutsu, Daiji Fukagawa\",\"doi\":\"10.1142/9781860947995_0019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes algorithms for inferring a chemical structure from a feature vector based on frequency of labeled paths and small fragments, where this inference problem has a potential application to drug design. In this paper, chemical structures are modeled as trees or tree-like structures. It is shown that the inference problems for these kinds of structures can be solved in polynomial time using dynamic programming-based algorithms. Since these algorithms are not practical, a branchand-bound type algorithm is also proposed. The result of computational experiment suggests that the algorithm can solve the inference problem in a few or few-tens of seconds for moderate size chemical compounds.\",\"PeriodicalId\":74513,\"journal\":{\"name\":\"Proceedings of the ... Asia-Pacific bioinformatics conference\",\"volume\":\"44 1\",\"pages\":\"165-174\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... Asia-Pacific bioinformatics conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9781860947995_0019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... Asia-Pacific bioinformatics conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9781860947995_0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Inferring a Chemical Structure from a Feature Vector Based on Frequency of Labeled Paths and Small Fragments
This paper proposes algorithms for inferring a chemical structure from a feature vector based on frequency of labeled paths and small fragments, where this inference problem has a potential application to drug design. In this paper, chemical structures are modeled as trees or tree-like structures. It is shown that the inference problems for these kinds of structures can be solved in polynomial time using dynamic programming-based algorithms. Since these algorithms are not practical, a branchand-bound type algorithm is also proposed. The result of computational experiment suggests that the algorithm can solve the inference problem in a few or few-tens of seconds for moderate size chemical compounds.