脑机接口通道选择的多目标进化方法:初步实验结果

B. A. S. Hasan, J. Q. Gan, Qingfu Zhang
{"title":"脑机接口通道选择的多目标进化方法:初步实验结果","authors":"B. A. S. Hasan, J. Q. Gan, Qingfu Zhang","doi":"10.1109/CEC.2010.5586411","DOIUrl":null,"url":null,"abstract":"This paper presents a comparative study among three evolutionary and search based methods to solve the problem of channel selection for Brain-Computer Interface (BCI) systems. Multi-Objective Particle Swarm Optimization (MOPSO) method is compared to Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D) and single objective Sequential Floating Forward Search (SFFS) method. The methods are tested on the first data set for BCI-Competition IV. The results show the usefulness of the multi-objective evolutionary methods in achieving accuracy results similar to the extensive search method with fewer channels and less computational time.","PeriodicalId":6344,"journal":{"name":"2009 IEEE Congress on Evolutionary Computation","volume":"21 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Multi-objective evolutionary methods for channel selection in Brain-Computer Interfaces: Some preliminary experimental results\",\"authors\":\"B. A. S. Hasan, J. Q. Gan, Qingfu Zhang\",\"doi\":\"10.1109/CEC.2010.5586411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a comparative study among three evolutionary and search based methods to solve the problem of channel selection for Brain-Computer Interface (BCI) systems. Multi-Objective Particle Swarm Optimization (MOPSO) method is compared to Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D) and single objective Sequential Floating Forward Search (SFFS) method. The methods are tested on the first data set for BCI-Competition IV. The results show the usefulness of the multi-objective evolutionary methods in achieving accuracy results similar to the extensive search method with fewer channels and less computational time.\",\"PeriodicalId\":6344,\"journal\":{\"name\":\"2009 IEEE Congress on Evolutionary Computation\",\"volume\":\"21 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Congress on Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2010.5586411\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2010.5586411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

针对脑机接口(BCI)系统的信道选择问题,对基于进化和搜索的三种方法进行了比较研究。将多目标粒子群优化(MOPSO)方法与基于分解的多目标进化算法(MOEA/D)和单目标顺序浮动正向搜索(SFFS)方法进行了比较。在BCI-Competition IV的第一个数据集上对该方法进行了测试。结果表明,多目标进化方法在以更少的通道和更少的计算时间获得与广泛搜索方法相似的精度结果方面是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-objective evolutionary methods for channel selection in Brain-Computer Interfaces: Some preliminary experimental results
This paper presents a comparative study among three evolutionary and search based methods to solve the problem of channel selection for Brain-Computer Interface (BCI) systems. Multi-Objective Particle Swarm Optimization (MOPSO) method is compared to Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D) and single objective Sequential Floating Forward Search (SFFS) method. The methods are tested on the first data set for BCI-Competition IV. The results show the usefulness of the multi-objective evolutionary methods in achieving accuracy results similar to the extensive search method with fewer channels and less computational time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信