{"title":"脑机接口通道选择的多目标进化方法:初步实验结果","authors":"B. A. S. Hasan, J. Q. Gan, Qingfu Zhang","doi":"10.1109/CEC.2010.5586411","DOIUrl":null,"url":null,"abstract":"This paper presents a comparative study among three evolutionary and search based methods to solve the problem of channel selection for Brain-Computer Interface (BCI) systems. Multi-Objective Particle Swarm Optimization (MOPSO) method is compared to Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D) and single objective Sequential Floating Forward Search (SFFS) method. The methods are tested on the first data set for BCI-Competition IV. The results show the usefulness of the multi-objective evolutionary methods in achieving accuracy results similar to the extensive search method with fewer channels and less computational time.","PeriodicalId":6344,"journal":{"name":"2009 IEEE Congress on Evolutionary Computation","volume":"21 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Multi-objective evolutionary methods for channel selection in Brain-Computer Interfaces: Some preliminary experimental results\",\"authors\":\"B. A. S. Hasan, J. Q. Gan, Qingfu Zhang\",\"doi\":\"10.1109/CEC.2010.5586411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a comparative study among three evolutionary and search based methods to solve the problem of channel selection for Brain-Computer Interface (BCI) systems. Multi-Objective Particle Swarm Optimization (MOPSO) method is compared to Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D) and single objective Sequential Floating Forward Search (SFFS) method. The methods are tested on the first data set for BCI-Competition IV. The results show the usefulness of the multi-objective evolutionary methods in achieving accuracy results similar to the extensive search method with fewer channels and less computational time.\",\"PeriodicalId\":6344,\"journal\":{\"name\":\"2009 IEEE Congress on Evolutionary Computation\",\"volume\":\"21 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Congress on Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2010.5586411\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2010.5586411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-objective evolutionary methods for channel selection in Brain-Computer Interfaces: Some preliminary experimental results
This paper presents a comparative study among three evolutionary and search based methods to solve the problem of channel selection for Brain-Computer Interface (BCI) systems. Multi-Objective Particle Swarm Optimization (MOPSO) method is compared to Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D) and single objective Sequential Floating Forward Search (SFFS) method. The methods are tested on the first data set for BCI-Competition IV. The results show the usefulness of the multi-objective evolutionary methods in achieving accuracy results similar to the extensive search method with fewer channels and less computational time.