基于扩展卷积神经网络的医学命名实体识别

Ruoyu Zhang, Pengyu Zhao, Weiyu Guo, Rongyao Wang, Wenpeng Lu
{"title":"基于扩展卷积神经网络的医学命名实体识别","authors":"Ruoyu Zhang,&nbsp;Pengyu Zhao,&nbsp;Weiyu Guo,&nbsp;Rongyao Wang,&nbsp;Wenpeng Lu","doi":"10.1016/j.cogr.2021.11.002","DOIUrl":null,"url":null,"abstract":"<div><p>Named entity recognition (NER) is a fundamental and important task in natural language processing. Existing methods attempt to utilize convolutional neural network (CNN) to solve NER task. However, a disadvantage of CNN is that it fails to obtain the global information of texts, leading to an unsatisfied performance on medical NER task. In view of the disadvantages of CNN in medical NER task, this paper proposes to utilize the dilated convolutional neural network (DCNN) and bidirectional long short-term memory (BiLSTM) for hierarchical encoding, and make use of the advantages of DCNN to capture global information with fast computing speed. At the same time, multiple feature words are inserted into the medical text datasets for improving the performance of medical NER. Extensive experiments are done on three real-world datasets, which demonstrate that our method is superior to the compared models.</p></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"2 ","pages":"Pages 13-20"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667241321000197/pdfft?md5=d7c76f5b56d0a24ccedc158c4fd7c2cb&pid=1-s2.0-S2667241321000197-main.pdf","citationCount":"7","resultStr":"{\"title\":\"Medical named entity recognition based on dilated convolutional neural network\",\"authors\":\"Ruoyu Zhang,&nbsp;Pengyu Zhao,&nbsp;Weiyu Guo,&nbsp;Rongyao Wang,&nbsp;Wenpeng Lu\",\"doi\":\"10.1016/j.cogr.2021.11.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Named entity recognition (NER) is a fundamental and important task in natural language processing. Existing methods attempt to utilize convolutional neural network (CNN) to solve NER task. However, a disadvantage of CNN is that it fails to obtain the global information of texts, leading to an unsatisfied performance on medical NER task. In view of the disadvantages of CNN in medical NER task, this paper proposes to utilize the dilated convolutional neural network (DCNN) and bidirectional long short-term memory (BiLSTM) for hierarchical encoding, and make use of the advantages of DCNN to capture global information with fast computing speed. At the same time, multiple feature words are inserted into the medical text datasets for improving the performance of medical NER. Extensive experiments are done on three real-world datasets, which demonstrate that our method is superior to the compared models.</p></div>\",\"PeriodicalId\":100288,\"journal\":{\"name\":\"Cognitive Robotics\",\"volume\":\"2 \",\"pages\":\"Pages 13-20\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667241321000197/pdfft?md5=d7c76f5b56d0a24ccedc158c4fd7c2cb&pid=1-s2.0-S2667241321000197-main.pdf\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667241321000197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Robotics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667241321000197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

命名实体识别(NER)是自然语言处理中的一项基础和重要任务。现有方法试图利用卷积神经网络(CNN)来解决NER任务。然而,CNN的一个缺点是无法获得文本的全局信息,导致在医疗NER任务上的表现不理想。针对CNN在医疗NER任务中的不足,本文提出利用扩张型卷积神经网络(DCNN)和双向长短期记忆(BiLSTM)进行分层编码,利用DCNN的优势,以较快的计算速度捕获全局信息。同时,在医学文本数据集中插入多个特征词,提高医学NER的性能。在三个实际数据集上进行了大量的实验,结果表明我们的方法优于比较模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Medical named entity recognition based on dilated convolutional neural network

Named entity recognition (NER) is a fundamental and important task in natural language processing. Existing methods attempt to utilize convolutional neural network (CNN) to solve NER task. However, a disadvantage of CNN is that it fails to obtain the global information of texts, leading to an unsatisfied performance on medical NER task. In view of the disadvantages of CNN in medical NER task, this paper proposes to utilize the dilated convolutional neural network (DCNN) and bidirectional long short-term memory (BiLSTM) for hierarchical encoding, and make use of the advantages of DCNN to capture global information with fast computing speed. At the same time, multiple feature words are inserted into the medical text datasets for improving the performance of medical NER. Extensive experiments are done on three real-world datasets, which demonstrate that our method is superior to the compared models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信