李群的表示

Amor Hasić
{"title":"李群的表示","authors":"Amor Hasić","doi":"10.4236/alamt.2021.114009","DOIUrl":null,"url":null,"abstract":"In this paper, the most important liner groups are classified. Those that we often have the opportunity to meet when studying linear groups as well as their application in left groups. In addition to the introductory part, we have general linear groups, special linear groups, octagonal groups, symplicit groups, cyclic groups, dihedral groups: generators and relations. The paper is summarized with brief deficits, examples and evidence as well as several problems. When you ask why this paper, I will just say that it is one of the ways I contribute to the community and try to be a part of this little world of science.","PeriodicalId":65610,"journal":{"name":"线性代数与矩阵理论研究进展(英文)","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":"{\"title\":\"Representations of Lie Groups\",\"authors\":\"Amor Hasić\",\"doi\":\"10.4236/alamt.2021.114009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the most important liner groups are classified. Those that we often have the opportunity to meet when studying linear groups as well as their application in left groups. In addition to the introductory part, we have general linear groups, special linear groups, octagonal groups, symplicit groups, cyclic groups, dihedral groups: generators and relations. The paper is summarized with brief deficits, examples and evidence as well as several problems. When you ask why this paper, I will just say that it is one of the ways I contribute to the community and try to be a part of this little world of science.\",\"PeriodicalId\":65610,\"journal\":{\"name\":\"线性代数与矩阵理论研究进展(英文)\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"线性代数与矩阵理论研究进展(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/alamt.2021.114009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"线性代数与矩阵理论研究进展(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/alamt.2021.114009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

摘要

本文对最重要的线性群进行了分类。这些是我们在学习线性群以及它们在左群中的应用时经常遇到的。除了引言部分,我们还讨论了一般线性群,特殊线性群,八角形群,辛群,循环群,二面体群:生成和关系。本文总结了不足之处,举例和证据,并提出了几个问题。当你问我为什么要写这篇论文的时候,我会说这是我为这个社区做贡献的一种方式,我想成为这个小小的科学世界的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Representations of Lie Groups
In this paper, the most important liner groups are classified. Those that we often have the opportunity to meet when studying linear groups as well as their application in left groups. In addition to the introductory part, we have general linear groups, special linear groups, octagonal groups, symplicit groups, cyclic groups, dihedral groups: generators and relations. The paper is summarized with brief deficits, examples and evidence as well as several problems. When you ask why this paper, I will just say that it is one of the ways I contribute to the community and try to be a part of this little world of science.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
56
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信