S. V. Belov, Аleksey V. Bel’kov, A. Zhukov, M. Pavlov, S. Ponomarev
{"title":"小型卫星在不同电路板密度下的热状态","authors":"S. V. Belov, Аleksey V. Bel’kov, A. Zhukov, M. Pavlov, S. Ponomarev","doi":"10.17223/19988621/82/6","DOIUrl":null,"url":null,"abstract":"To reduce the cost of CubeSat satellites, an industrial level of performance for radio-electronic components designed for ground operations is applied. A specific tem-perature range should be maintained for such electronic components to operate under space flight conditions. Since the CubeSat spacecraft does not have an active temperature regulation system, the thermal conditions are determined by the balance between inactive absorbed and radiated energy flows, including internal heat release. This paper considers the effect of heat release from circuit boards of different packing density in the electronic equipment on the 1U CubeSat thermal conditions. Both the absorbed radiation from ex-ternal sources, the radiation from the CubeSat external surfaces, the inner heat release, and the re-radiation between the surfaces within the spacecraft are taken into account. The formulated problem is solved numerically. The results show the effect of circuit board packing density on the amplitudes of temperature oscillations and on the average temperatures of satellite structural elements.","PeriodicalId":43729,"journal":{"name":"Vestnik Tomskogo Gosudarstvennogo Universiteta-Matematika i Mekhanika-Tomsk State University Journal of Mathematics and Mechanics","volume":"87 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A thermal state of a small satellite at various packing density of electronic circuit boards\",\"authors\":\"S. V. Belov, Аleksey V. Bel’kov, A. Zhukov, M. Pavlov, S. Ponomarev\",\"doi\":\"10.17223/19988621/82/6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To reduce the cost of CubeSat satellites, an industrial level of performance for radio-electronic components designed for ground operations is applied. A specific tem-perature range should be maintained for such electronic components to operate under space flight conditions. Since the CubeSat spacecraft does not have an active temperature regulation system, the thermal conditions are determined by the balance between inactive absorbed and radiated energy flows, including internal heat release. This paper considers the effect of heat release from circuit boards of different packing density in the electronic equipment on the 1U CubeSat thermal conditions. Both the absorbed radiation from ex-ternal sources, the radiation from the CubeSat external surfaces, the inner heat release, and the re-radiation between the surfaces within the spacecraft are taken into account. The formulated problem is solved numerically. The results show the effect of circuit board packing density on the amplitudes of temperature oscillations and on the average temperatures of satellite structural elements.\",\"PeriodicalId\":43729,\"journal\":{\"name\":\"Vestnik Tomskogo Gosudarstvennogo Universiteta-Matematika i Mekhanika-Tomsk State University Journal of Mathematics and Mechanics\",\"volume\":\"87 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vestnik Tomskogo Gosudarstvennogo Universiteta-Matematika i Mekhanika-Tomsk State University Journal of Mathematics and Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17223/19988621/82/6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik Tomskogo Gosudarstvennogo Universiteta-Matematika i Mekhanika-Tomsk State University Journal of Mathematics and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17223/19988621/82/6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
A thermal state of a small satellite at various packing density of electronic circuit boards
To reduce the cost of CubeSat satellites, an industrial level of performance for radio-electronic components designed for ground operations is applied. A specific tem-perature range should be maintained for such electronic components to operate under space flight conditions. Since the CubeSat spacecraft does not have an active temperature regulation system, the thermal conditions are determined by the balance between inactive absorbed and radiated energy flows, including internal heat release. This paper considers the effect of heat release from circuit boards of different packing density in the electronic equipment on the 1U CubeSat thermal conditions. Both the absorbed radiation from ex-ternal sources, the radiation from the CubeSat external surfaces, the inner heat release, and the re-radiation between the surfaces within the spacecraft are taken into account. The formulated problem is solved numerically. The results show the effect of circuit board packing density on the amplitudes of temperature oscillations and on the average temperatures of satellite structural elements.