小型卫星在不同电路板密度下的热状态

IF 0.3 Q4 MECHANICS
S. V. Belov, Аleksey V. Bel’kov, A. Zhukov, M. Pavlov, S. Ponomarev
{"title":"小型卫星在不同电路板密度下的热状态","authors":"S. V. Belov, Аleksey V. Bel’kov, A. Zhukov, M. Pavlov, S. Ponomarev","doi":"10.17223/19988621/82/6","DOIUrl":null,"url":null,"abstract":"To reduce the cost of CubeSat satellites, an industrial level of performance for radio-electronic components designed for ground operations is applied. A specific tem-perature range should be maintained for such electronic components to operate under space flight conditions. Since the CubeSat spacecraft does not have an active temperature regulation system, the thermal conditions are determined by the balance between inactive absorbed and radiated energy flows, including internal heat release. This paper considers the effect of heat release from circuit boards of different packing density in the electronic equipment on the 1U CubeSat thermal conditions. Both the absorbed radiation from ex-ternal sources, the radiation from the CubeSat external surfaces, the inner heat release, and the re-radiation between the surfaces within the spacecraft are taken into account. The formulated problem is solved numerically. The results show the effect of circuit board packing density on the amplitudes of temperature oscillations and on the average temperatures of satellite structural elements.","PeriodicalId":43729,"journal":{"name":"Vestnik Tomskogo Gosudarstvennogo Universiteta-Matematika i Mekhanika-Tomsk State University Journal of Mathematics and Mechanics","volume":"87 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A thermal state of a small satellite at various packing density of electronic circuit boards\",\"authors\":\"S. V. Belov, Аleksey V. Bel’kov, A. Zhukov, M. Pavlov, S. Ponomarev\",\"doi\":\"10.17223/19988621/82/6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To reduce the cost of CubeSat satellites, an industrial level of performance for radio-electronic components designed for ground operations is applied. A specific tem-perature range should be maintained for such electronic components to operate under space flight conditions. Since the CubeSat spacecraft does not have an active temperature regulation system, the thermal conditions are determined by the balance between inactive absorbed and radiated energy flows, including internal heat release. This paper considers the effect of heat release from circuit boards of different packing density in the electronic equipment on the 1U CubeSat thermal conditions. Both the absorbed radiation from ex-ternal sources, the radiation from the CubeSat external surfaces, the inner heat release, and the re-radiation between the surfaces within the spacecraft are taken into account. The formulated problem is solved numerically. The results show the effect of circuit board packing density on the amplitudes of temperature oscillations and on the average temperatures of satellite structural elements.\",\"PeriodicalId\":43729,\"journal\":{\"name\":\"Vestnik Tomskogo Gosudarstvennogo Universiteta-Matematika i Mekhanika-Tomsk State University Journal of Mathematics and Mechanics\",\"volume\":\"87 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vestnik Tomskogo Gosudarstvennogo Universiteta-Matematika i Mekhanika-Tomsk State University Journal of Mathematics and Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17223/19988621/82/6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik Tomskogo Gosudarstvennogo Universiteta-Matematika i Mekhanika-Tomsk State University Journal of Mathematics and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17223/19988621/82/6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

为了降低立方体卫星的成本,应用了为地面操作设计的无线电电子元件的工业性能水平。这类电子元件在太空飞行条件下应保持一个特定的温度范围。由于CubeSat航天器没有主动温度调节系统,因此热条件取决于非主动吸收和辐射能量流之间的平衡,包括内部热释放。本文研究了电子设备中不同封装密度的电路板放热对1U CubeSat热条件的影响。从外部源吸收的辐射、立方体卫星外表面的辐射、内部热释放以及航天器内表面之间的再辐射都被考虑在内。公式问题用数值方法求解。结果表明,电路板填充密度对卫星结构元件温度振荡幅度和平均温度的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A thermal state of a small satellite at various packing density of electronic circuit boards
To reduce the cost of CubeSat satellites, an industrial level of performance for radio-electronic components designed for ground operations is applied. A specific tem-perature range should be maintained for such electronic components to operate under space flight conditions. Since the CubeSat spacecraft does not have an active temperature regulation system, the thermal conditions are determined by the balance between inactive absorbed and radiated energy flows, including internal heat release. This paper considers the effect of heat release from circuit boards of different packing density in the electronic equipment on the 1U CubeSat thermal conditions. Both the absorbed radiation from ex-ternal sources, the radiation from the CubeSat external surfaces, the inner heat release, and the re-radiation between the surfaces within the spacecraft are taken into account. The formulated problem is solved numerically. The results show the effect of circuit board packing density on the amplitudes of temperature oscillations and on the average temperatures of satellite structural elements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
66.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信