掺林巴木废料的4%水泥稳定粘土砖力学性能评价

H. Elenga, Ferland Ngoro-Elenga, M. Tchoumou, Jude Novelgi Ngakosso Ngolo, Ottard Mwa Ngo Ossiby, T. Nsongo
{"title":"掺林巴木废料的4%水泥稳定粘土砖力学性能评价","authors":"H. Elenga, Ferland Ngoro-Elenga, M. Tchoumou, Jude Novelgi Ngakosso Ngolo, Ottard Mwa Ngo Ossiby, T. Nsongo","doi":"10.11648/J.IJMSA.20211005.14","DOIUrl":null,"url":null,"abstract":"In this study, the authors evaluated the mechanical behavior of bricks made of clay material stabilized with 4% cement and mixed with different contents (0; 2; 4; 6 and 8%) of limba wood waste (sawdust and chips). The clayey raw material ANMK was characterized by the method of X-ray diffraction (XRD) on oriented sheets (normal, glycol and heated to 490°C), by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The chemical and mineralogical compositions of cement used were determined by inductively coupled plasma – optical emission spectrometry (ICP-OES) and by X-ray diffraction. This clay material consists of 96% kaolinite and 4% of the chlorite / montmorillonite interstratified. The morphology of the material observed by scanning electron microscopy showed an irregularity of clusters. The elementary analysis by energy dispersive spectroscopy shows that this material is essentially aluminosilicate. The chemical analysis of the cement showed a predominance of CaO (67%) and SiO2 (21%), however the mineralogical analysis showed the presence of calcite, alite, hatrurite and brownmillerite. This clay material has a mass shrinkage on drying of 26.6% and the linear shrinkage is 6.4%. The formulation with sawdust appears to give greater flexural and compressive strengths than those obtained with chips.","PeriodicalId":14116,"journal":{"name":"International Journal of Materials Science and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of the Mechanical Behavior of Clay Bricks Stabilized at 4% Cement and Mixed with Limba Wood Waste\",\"authors\":\"H. Elenga, Ferland Ngoro-Elenga, M. Tchoumou, Jude Novelgi Ngakosso Ngolo, Ottard Mwa Ngo Ossiby, T. Nsongo\",\"doi\":\"10.11648/J.IJMSA.20211005.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the authors evaluated the mechanical behavior of bricks made of clay material stabilized with 4% cement and mixed with different contents (0; 2; 4; 6 and 8%) of limba wood waste (sawdust and chips). The clayey raw material ANMK was characterized by the method of X-ray diffraction (XRD) on oriented sheets (normal, glycol and heated to 490°C), by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The chemical and mineralogical compositions of cement used were determined by inductively coupled plasma – optical emission spectrometry (ICP-OES) and by X-ray diffraction. This clay material consists of 96% kaolinite and 4% of the chlorite / montmorillonite interstratified. The morphology of the material observed by scanning electron microscopy showed an irregularity of clusters. The elementary analysis by energy dispersive spectroscopy shows that this material is essentially aluminosilicate. The chemical analysis of the cement showed a predominance of CaO (67%) and SiO2 (21%), however the mineralogical analysis showed the presence of calcite, alite, hatrurite and brownmillerite. This clay material has a mass shrinkage on drying of 26.6% and the linear shrinkage is 6.4%. The formulation with sawdust appears to give greater flexural and compressive strengths than those obtained with chips.\",\"PeriodicalId\":14116,\"journal\":{\"name\":\"International Journal of Materials Science and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Materials Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.IJMSA.20211005.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Materials Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.IJMSA.20211005.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,作者评估了粘土材料在4%水泥稳定下,不同掺量(0;2;4;林巴木材废料(锯末和木片)的6%和8%。采用x射线衍射(XRD)、扫描电子显微镜(SEM)和能谱仪(EDS)对粘土原料ANMK进行了表征。采用电感耦合等离子体发射光谱法(ICP-OES)和x射线衍射法测定了水泥的化学和矿物组成。该粘土材料由96%的高岭石和4%的绿泥石/蒙脱石组成。通过扫描电子显微镜观察到材料的形貌显示出不规则的团簇。能量色散光谱的元素分析表明,该材料本质上是硅酸铝。化学分析结果表明,水泥主要以CaO(67%)和SiO2(21%)为主,而矿物学分析结果显示,水泥中存在方解石、阿利石、红褐石和褐粒石。该粘土材料的干燥质量收缩率为26.6%,线收缩率为6.4%。用木屑制成的配方似乎比用木屑制成的配方具有更大的抗折和抗压强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of the Mechanical Behavior of Clay Bricks Stabilized at 4% Cement and Mixed with Limba Wood Waste
In this study, the authors evaluated the mechanical behavior of bricks made of clay material stabilized with 4% cement and mixed with different contents (0; 2; 4; 6 and 8%) of limba wood waste (sawdust and chips). The clayey raw material ANMK was characterized by the method of X-ray diffraction (XRD) on oriented sheets (normal, glycol and heated to 490°C), by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The chemical and mineralogical compositions of cement used were determined by inductively coupled plasma – optical emission spectrometry (ICP-OES) and by X-ray diffraction. This clay material consists of 96% kaolinite and 4% of the chlorite / montmorillonite interstratified. The morphology of the material observed by scanning electron microscopy showed an irregularity of clusters. The elementary analysis by energy dispersive spectroscopy shows that this material is essentially aluminosilicate. The chemical analysis of the cement showed a predominance of CaO (67%) and SiO2 (21%), however the mineralogical analysis showed the presence of calcite, alite, hatrurite and brownmillerite. This clay material has a mass shrinkage on drying of 26.6% and the linear shrinkage is 6.4%. The formulation with sawdust appears to give greater flexural and compressive strengths than those obtained with chips.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信