遗传算法在常见优化问题中的应用

N. Topuria, O. Kikvidze
{"title":"遗传算法在常见优化问题中的应用","authors":"N. Topuria, O. Kikvidze","doi":"10.21467/IAS.8.1.17-21","DOIUrl":null,"url":null,"abstract":"Use of non-deterministic algorithms for solving multi-variable optimization problems is widely used nowadays. Genetic Algorithm belongs to a group of stochastic biomimicry algorithms, it allows us to achieve optimal or near-optimal results in large optimization problems in exceptionally short time (compared to standard optimization methods). Major advantage of Genetic Algorithm is the ability to fuse genes, to mutate and do selection based on fitness parameter. These methods protect us from being trapped in local optima (Most of deterministic algorithms are prone to getting stuck on local optima). In this paper we experimentally show the upper hand of Genetic Algorithms compared to other traditional optimization methods by solving complex optimization problem.","PeriodicalId":52800,"journal":{"name":"International Journal of Science Annals","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Genetic Algorithm in Common Optimization Problems\",\"authors\":\"N. Topuria, O. Kikvidze\",\"doi\":\"10.21467/IAS.8.1.17-21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Use of non-deterministic algorithms for solving multi-variable optimization problems is widely used nowadays. Genetic Algorithm belongs to a group of stochastic biomimicry algorithms, it allows us to achieve optimal or near-optimal results in large optimization problems in exceptionally short time (compared to standard optimization methods). Major advantage of Genetic Algorithm is the ability to fuse genes, to mutate and do selection based on fitness parameter. These methods protect us from being trapped in local optima (Most of deterministic algorithms are prone to getting stuck on local optima). In this paper we experimentally show the upper hand of Genetic Algorithms compared to other traditional optimization methods by solving complex optimization problem.\",\"PeriodicalId\":52800,\"journal\":{\"name\":\"International Journal of Science Annals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Science Annals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21467/IAS.8.1.17-21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Science Annals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21467/IAS.8.1.17-21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

非确定性算法在求解多变量优化问题中得到了广泛的应用。遗传算法属于一组随机仿生学算法,它允许我们在极短的时间内(与标准优化方法相比)在大型优化问题中获得最优或接近最优的结果。遗传算法的主要优点是能够进行基因融合、突变和基于适应度参数的选择。这些方法可以防止我们陷入局部最优状态(大多数确定性算法都容易陷入局部最优状态)。本文通过解决复杂的优化问题,通过实验证明了遗传算法相对于传统优化方法的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Genetic Algorithm in Common Optimization Problems
Use of non-deterministic algorithms for solving multi-variable optimization problems is widely used nowadays. Genetic Algorithm belongs to a group of stochastic biomimicry algorithms, it allows us to achieve optimal or near-optimal results in large optimization problems in exceptionally short time (compared to standard optimization methods). Major advantage of Genetic Algorithm is the ability to fuse genes, to mutate and do selection based on fitness parameter. These methods protect us from being trapped in local optima (Most of deterministic algorithms are prone to getting stuck on local optima). In this paper we experimentally show the upper hand of Genetic Algorithms compared to other traditional optimization methods by solving complex optimization problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
3 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信