关于一个不具有根向量基性质的微扰正则算子的多重微分问题

IF 0.4 Q4 MATHEMATICS
N. Imanbaev
{"title":"关于一个不具有根向量基性质的微扰正则算子的多重微分问题","authors":"N. Imanbaev","doi":"10.17516/1997-1397-2020-13-5-568-573","DOIUrl":null,"url":null,"abstract":"A spectral problem for a multiple differentiation operator with integral perturbation of boundary value conditions which are regular but not strongly regular is considered in the paper. The feature of the problem is the absence of the basis property of the system of root vectors. A characteristic determinant of the spectral problem is constructed. It is shown that absence of the basis property of the system of root functions of the problem is unstable with respect to the integral perturbation of the boundary value condition","PeriodicalId":43965,"journal":{"name":"Journal of Siberian Federal University-Mathematics & Physics","volume":"T156 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On a Problem that Does not Have Basis Property of Root Vectors, Associated with a Perturbed Regular Operator of Multiple Differentiation\",\"authors\":\"N. Imanbaev\",\"doi\":\"10.17516/1997-1397-2020-13-5-568-573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A spectral problem for a multiple differentiation operator with integral perturbation of boundary value conditions which are regular but not strongly regular is considered in the paper. The feature of the problem is the absence of the basis property of the system of root vectors. A characteristic determinant of the spectral problem is constructed. It is shown that absence of the basis property of the system of root functions of the problem is unstable with respect to the integral perturbation of the boundary value condition\",\"PeriodicalId\":43965,\"journal\":{\"name\":\"Journal of Siberian Federal University-Mathematics & Physics\",\"volume\":\"T156 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Siberian Federal University-Mathematics & Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17516/1997-1397-2020-13-5-568-573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Siberian Federal University-Mathematics & Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17516/1997-1397-2020-13-5-568-573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

研究一类具有正则但非强正则边值条件的积分摄动的多重微分算子的谱问题。该问题的特点是不存在根向量系统的基性质。构造了谱问题的特征行列式。对于边值条件的积分摄动,证明了该问题的根函数系统缺乏基性质是不稳定的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a Problem that Does not Have Basis Property of Root Vectors, Associated with a Perturbed Regular Operator of Multiple Differentiation
A spectral problem for a multiple differentiation operator with integral perturbation of boundary value conditions which are regular but not strongly regular is considered in the paper. The feature of the problem is the absence of the basis property of the system of root vectors. A characteristic determinant of the spectral problem is constructed. It is shown that absence of the basis property of the system of root functions of the problem is unstable with respect to the integral perturbation of the boundary value condition
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
26
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信