Ramond-Ramond场和扭曲微分k理论

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Daniel Grady, H. Sati
{"title":"Ramond-Ramond场和扭曲微分k理论","authors":"Daniel Grady, H. Sati","doi":"10.4310/atmp.2022.v26.n5.a2","DOIUrl":null,"url":null,"abstract":"We provide a systematic approach to describing the Ramond-Ramond (RR) fields as elements in twisted differential K-theory. This builds on a series of constructions by the authors on geometric and computational aspects of twisted differential K-theory, which to a large extent were originally motivated by this problem. In addition to providing a new conceptual framework and a mathematically solid setting, this allows us to uncover interesting and novel effects. Explicitly, we use our recently constructed Atiyah-Hirzebruch spectral sequence (AHSS) for twisted differential K-theory to characterize the RR fields and their quantization, which involves interesting interplay between geometric and topological data. We illustrate this with the examples of spheres, tori, and Calabi-Yau threefolds.","PeriodicalId":50848,"journal":{"name":"Advances in Theoretical and Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2019-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Ramond–Ramond fields and twisted differential K-theory\",\"authors\":\"Daniel Grady, H. Sati\",\"doi\":\"10.4310/atmp.2022.v26.n5.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide a systematic approach to describing the Ramond-Ramond (RR) fields as elements in twisted differential K-theory. This builds on a series of constructions by the authors on geometric and computational aspects of twisted differential K-theory, which to a large extent were originally motivated by this problem. In addition to providing a new conceptual framework and a mathematically solid setting, this allows us to uncover interesting and novel effects. Explicitly, we use our recently constructed Atiyah-Hirzebruch spectral sequence (AHSS) for twisted differential K-theory to characterize the RR fields and their quantization, which involves interesting interplay between geometric and topological data. We illustrate this with the examples of spheres, tori, and Calabi-Yau threefolds.\",\"PeriodicalId\":50848,\"journal\":{\"name\":\"Advances in Theoretical and Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Theoretical and Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.4310/atmp.2022.v26.n5.a2\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.4310/atmp.2022.v26.n5.a2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 16

摘要

我们提供了一个系统的方法来描述Ramond-Ramond (RR)场作为扭曲微分k理论中的元素。这建立在作者对扭曲微分k理论的几何和计算方面的一系列构造的基础上,这些构造在很大程度上最初是由这个问题引起的。除了提供一个新的概念框架和数学上可靠的设置,这使我们能够发现有趣和新颖的效果。明确地,我们使用我们最近构造的扭曲微分k理论的Atiyah-Hirzebruch谱序列(AHSS)来表征RR场及其量化,这涉及到几何和拓扑数据之间有趣的相互作用。我们用球体、环面和Calabi-Yau三倍的例子来说明这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ramond–Ramond fields and twisted differential K-theory
We provide a systematic approach to describing the Ramond-Ramond (RR) fields as elements in twisted differential K-theory. This builds on a series of constructions by the authors on geometric and computational aspects of twisted differential K-theory, which to a large extent were originally motivated by this problem. In addition to providing a new conceptual framework and a mathematically solid setting, this allows us to uncover interesting and novel effects. Explicitly, we use our recently constructed Atiyah-Hirzebruch spectral sequence (AHSS) for twisted differential K-theory to characterize the RR fields and their quantization, which involves interesting interplay between geometric and topological data. We illustrate this with the examples of spheres, tori, and Calabi-Yau threefolds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Theoretical and Mathematical Physics
Advances in Theoretical and Mathematical Physics 物理-物理:粒子与场物理
CiteScore
2.20
自引率
6.70%
发文量
0
审稿时长
>12 weeks
期刊介绍: Advances in Theoretical and Mathematical Physics is a bimonthly publication of the International Press, publishing papers on all areas in which theoretical physics and mathematics interact with each other.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信