模型不确定性下模型预测控制的LQ进化算法优化器

H. Osman
{"title":"模型不确定性下模型预测控制的LQ进化算法优化器","authors":"H. Osman","doi":"10.1109/ICCAS.2014.6987752","DOIUrl":null,"url":null,"abstract":"This paper presents an evolution algorithm as a powerful optimisation technique for tuning Model Based Predictive Control (MBPC) at the implications of different levels of model uncertainties. Although Standard Genetic Algorithms (SGAs) are proven to successfully tune and optimise MBPC parameters when no model mismatch. SGAs are trapped in a local optimum at the price of model uncertainty. The multi-objective evaluation algorithms are capable to incorporate many objective functions that can meet simultaneously robust control design objective functions. These promising techniques are successfully implemented to stabilised MBPC at high model uncertainty.","PeriodicalId":6525,"journal":{"name":"2014 14th International Conference on Control, Automation and Systems (ICCAS 2014)","volume":"6 1","pages":"1272-1277"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"LQ evolution algorithm optimizer for model predictive control at model uncertainty\",\"authors\":\"H. Osman\",\"doi\":\"10.1109/ICCAS.2014.6987752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an evolution algorithm as a powerful optimisation technique for tuning Model Based Predictive Control (MBPC) at the implications of different levels of model uncertainties. Although Standard Genetic Algorithms (SGAs) are proven to successfully tune and optimise MBPC parameters when no model mismatch. SGAs are trapped in a local optimum at the price of model uncertainty. The multi-objective evaluation algorithms are capable to incorporate many objective functions that can meet simultaneously robust control design objective functions. These promising techniques are successfully implemented to stabilised MBPC at high model uncertainty.\",\"PeriodicalId\":6525,\"journal\":{\"name\":\"2014 14th International Conference on Control, Automation and Systems (ICCAS 2014)\",\"volume\":\"6 1\",\"pages\":\"1272-1277\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 14th International Conference on Control, Automation and Systems (ICCAS 2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAS.2014.6987752\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 14th International Conference on Control, Automation and Systems (ICCAS 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAS.2014.6987752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种进化算法作为一种强大的优化技术,用于在不同程度的模型不确定性影响下调整基于模型的预测控制(MBPC)。尽管标准遗传算法(SGAs)已被证明可以在没有模型不匹配的情况下成功地调整和优化MBPC参数。sga以模型不确定性为代价陷入局部最优。多目标评估算法能够包含多个目标函数,同时满足鲁棒控制设计目标函数。这些有前景的技术成功地应用于高模型不确定性下稳定MBPC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LQ evolution algorithm optimizer for model predictive control at model uncertainty
This paper presents an evolution algorithm as a powerful optimisation technique for tuning Model Based Predictive Control (MBPC) at the implications of different levels of model uncertainties. Although Standard Genetic Algorithms (SGAs) are proven to successfully tune and optimise MBPC parameters when no model mismatch. SGAs are trapped in a local optimum at the price of model uncertainty. The multi-objective evaluation algorithms are capable to incorporate many objective functions that can meet simultaneously robust control design objective functions. These promising techniques are successfully implemented to stabilised MBPC at high model uncertainty.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信