微带线路网络中主要不确定因素的识别

IF 6.7 1区 计算机科学 Q1 Physics and Astronomy
M. Larbi, I. Stievano, F. Canavero, P. Besnier
{"title":"微带线路网络中主要不确定因素的识别","authors":"M. Larbi, I. Stievano, F. Canavero, P. Besnier","doi":"10.2528/pier18040607","DOIUrl":null,"url":null,"abstract":"This paper deals with uncertainty propagation applied to the analysis of crosstalk in printed circuit board microstrip traces. Complex interconnection networks generally are affected by many uncertain parameters and their point-to-point transfer functions are computationally expensive, thus making Monte-Carlo analyses rather inefficient. To overcome this situation, a metamodel is highly desirable. This paper presents a sparse and accelerated polynomial chaos approach, which proves to be well adapted for high-dimensional uncertainty quantification and well suited for the sensitivity analysis of crosstalk effects. We highlight the significant advantage of the advocated approach for the design of microstrip line networks of complex topology. In fact, we demonstrate how a small number of system simulations can help to quantify the statistics of the output variability and identify a reduced set of high-impact parameters.","PeriodicalId":54551,"journal":{"name":"Progress in Electromagnetics Research-Pier","volume":"16 1","pages":"61-72"},"PeriodicalIF":6.7000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"IDENTFICATION OF MAIN FACTORS OF UNCERTAINTY IN A MICROSTRIP LINE NETWORK\",\"authors\":\"M. Larbi, I. Stievano, F. Canavero, P. Besnier\",\"doi\":\"10.2528/pier18040607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with uncertainty propagation applied to the analysis of crosstalk in printed circuit board microstrip traces. Complex interconnection networks generally are affected by many uncertain parameters and their point-to-point transfer functions are computationally expensive, thus making Monte-Carlo analyses rather inefficient. To overcome this situation, a metamodel is highly desirable. This paper presents a sparse and accelerated polynomial chaos approach, which proves to be well adapted for high-dimensional uncertainty quantification and well suited for the sensitivity analysis of crosstalk effects. We highlight the significant advantage of the advocated approach for the design of microstrip line networks of complex topology. In fact, we demonstrate how a small number of system simulations can help to quantify the statistics of the output variability and identify a reduced set of high-impact parameters.\",\"PeriodicalId\":54551,\"journal\":{\"name\":\"Progress in Electromagnetics Research-Pier\",\"volume\":\"16 1\",\"pages\":\"61-72\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Electromagnetics Research-Pier\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.2528/pier18040607\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Electromagnetics Research-Pier","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.2528/pier18040607","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 4

摘要

本文讨论了不确定性传播在分析印刷电路板微带走线串扰中的应用。复杂的互连网络通常受到许多不确定参数的影响,其点对点传递函数的计算成本很高,从而使蒙特卡罗分析效率低下。为了克服这种情况,非常需要一个元模型。本文提出了一种稀疏加速多项式混沌方法,该方法适用于高维不确定性量化和串扰效应的灵敏度分析。我们强调了所提倡的方法在复杂拓扑微带线网络设计中的显著优势。事实上,我们展示了少量的系统模拟如何有助于量化输出可变性的统计数据,并确定一组减少的高影响参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IDENTFICATION OF MAIN FACTORS OF UNCERTAINTY IN A MICROSTRIP LINE NETWORK
This paper deals with uncertainty propagation applied to the analysis of crosstalk in printed circuit board microstrip traces. Complex interconnection networks generally are affected by many uncertain parameters and their point-to-point transfer functions are computationally expensive, thus making Monte-Carlo analyses rather inefficient. To overcome this situation, a metamodel is highly desirable. This paper presents a sparse and accelerated polynomial chaos approach, which proves to be well adapted for high-dimensional uncertainty quantification and well suited for the sensitivity analysis of crosstalk effects. We highlight the significant advantage of the advocated approach for the design of microstrip line networks of complex topology. In fact, we demonstrate how a small number of system simulations can help to quantify the statistics of the output variability and identify a reduced set of high-impact parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
3.00%
发文量
0
审稿时长
1.3 months
期刊介绍: Progress In Electromagnetics Research (PIER) publishes peer-reviewed original and comprehensive articles on all aspects of electromagnetic theory and applications. This is an open access, on-line journal PIER (E-ISSN 1559-8985). It has been first published as a monograph series on Electromagnetic Waves (ISSN 1070-4698) in 1989. It is freely available to all readers via the Internet.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信