用于实际热管理的全芯片运行时容错热估计和预测

Hai Wang, S. Tan, Guangdeng Liao, Rafael Quintanilla, Ashish Gupta
{"title":"用于实际热管理的全芯片运行时容错热估计和预测","authors":"Hai Wang, S. Tan, Guangdeng Liao, Rafael Quintanilla, Ashish Gupta","doi":"10.1109/ICCAD.2011.6105408","DOIUrl":null,"url":null,"abstract":"Temperature estimation and prediction are critical for online regulation of temperature and hot spots on today's high performance processors. In this paper, we present a new method, called FRETEP, to accurately estimate and predict the full-chip temperature at runtime under more practical conditions where we have inaccurate thermal model, less accurate power estimations and limited number of on-chip physical thermal sensors. FRETEP employs a number of new techniques to address this problem. First, we propose a new thermal sensor based error compensation method to correct the errors due to the inaccuracies in thermal model and power estimations. Second, we raise a new correlation based method for error compensation estimation with limited number of thermal sensors. Third, we optimize the compact modeling technique and integrate it into the error compensation process in order to perform the thermal estimation with error compensation at runtime. Last but not least, to enable accurate temperature prediction for the emerging predictive thermal management, we design a full-chip thermal prediction framework employing time series prediction method. Experimental results show FRETEP accurately estimates and predicts the full-chip thermal behavior with very low overhead introduced and compares very favorably with the Kalman filter based approach on standard SPEC benchmarks.","PeriodicalId":6357,"journal":{"name":"2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"30 1","pages":"716-723"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Full-chip runtime error-tolerant thermal estimation and prediction for practical thermal management\",\"authors\":\"Hai Wang, S. Tan, Guangdeng Liao, Rafael Quintanilla, Ashish Gupta\",\"doi\":\"10.1109/ICCAD.2011.6105408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Temperature estimation and prediction are critical for online regulation of temperature and hot spots on today's high performance processors. In this paper, we present a new method, called FRETEP, to accurately estimate and predict the full-chip temperature at runtime under more practical conditions where we have inaccurate thermal model, less accurate power estimations and limited number of on-chip physical thermal sensors. FRETEP employs a number of new techniques to address this problem. First, we propose a new thermal sensor based error compensation method to correct the errors due to the inaccuracies in thermal model and power estimations. Second, we raise a new correlation based method for error compensation estimation with limited number of thermal sensors. Third, we optimize the compact modeling technique and integrate it into the error compensation process in order to perform the thermal estimation with error compensation at runtime. Last but not least, to enable accurate temperature prediction for the emerging predictive thermal management, we design a full-chip thermal prediction framework employing time series prediction method. Experimental results show FRETEP accurately estimates and predicts the full-chip thermal behavior with very low overhead introduced and compares very favorably with the Kalman filter based approach on standard SPEC benchmarks.\",\"PeriodicalId\":6357,\"journal\":{\"name\":\"2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"volume\":\"30 1\",\"pages\":\"716-723\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD.2011.6105408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.2011.6105408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

温度估计和预测对于当今高性能处理器的温度和热点的在线调节至关重要。在本文中,我们提出了一种新的方法,称为FRETEP,在更实际的条件下,我们有不准确的热模型,不准确的功率估计和片上物理热传感器数量有限的情况下,准确地估计和预测运行时的全芯片温度。FRETEP采用了许多新技术来解决这个问题。首先,我们提出了一种新的基于热传感器的误差补偿方法,以纠正由于热模型和功率估计不准确而导致的误差。其次,我们提出了一种新的基于相关的误差补偿估计方法。第三,我们优化了紧凑建模技术,并将其集成到误差补偿过程中,以便在运行时进行带有误差补偿的热估计。最后,为了能够对新兴的预测热管理进行准确的温度预测,我们设计了一个采用时间序列预测方法的全芯片热预测框架。实验结果表明,FRETEP在引入非常低的开销的情况下准确地估计和预测了全芯片的热行为,并且在标准SPEC基准测试中与基于卡尔曼滤波的方法相比非常有利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Full-chip runtime error-tolerant thermal estimation and prediction for practical thermal management
Temperature estimation and prediction are critical for online regulation of temperature and hot spots on today's high performance processors. In this paper, we present a new method, called FRETEP, to accurately estimate and predict the full-chip temperature at runtime under more practical conditions where we have inaccurate thermal model, less accurate power estimations and limited number of on-chip physical thermal sensors. FRETEP employs a number of new techniques to address this problem. First, we propose a new thermal sensor based error compensation method to correct the errors due to the inaccuracies in thermal model and power estimations. Second, we raise a new correlation based method for error compensation estimation with limited number of thermal sensors. Third, we optimize the compact modeling technique and integrate it into the error compensation process in order to perform the thermal estimation with error compensation at runtime. Last but not least, to enable accurate temperature prediction for the emerging predictive thermal management, we design a full-chip thermal prediction framework employing time series prediction method. Experimental results show FRETEP accurately estimates and predicts the full-chip thermal behavior with very low overhead introduced and compares very favorably with the Kalman filter based approach on standard SPEC benchmarks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信