{"title":"基于修订年龄的共变概率预测的软件资源库挖掘","authors":"Anushree Agrawal, R. K. Singh","doi":"10.4018/ijossp.2020040102","DOIUrl":null,"url":null,"abstract":"Changeability is an important aspect of software maintenance and helps in better planning of development and testing resources. Early detection of change-prone entities is beneficial in terms of both time and money and helps to estimate and meet deadlines reliably. Co-change prediction identifies the affected entities when implementing a change in the software system. Recent researches recommend the use of revision history for the identification of co-changed artifacts. However, very few studies are available for investigation of the effect of history size and age on prediction results. This manuscript studies the effect of age of change history on co-change prediction results in software applications by varying the weightage of change commits with time. ROC analysis is done to study the accuracy of the proposed approach, and the results indicate that the older change commits have lower significance in deriving the changeability pattern. The derived change impact set will be useful for software practitioners in change implementation and selective regression testing.","PeriodicalId":53605,"journal":{"name":"International Journal of Open Source Software and Processes","volume":"361 1","pages":"16-32"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Mining Software Repositories for Revision Age-Based Co-Change Probability Prediction\",\"authors\":\"Anushree Agrawal, R. K. Singh\",\"doi\":\"10.4018/ijossp.2020040102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Changeability is an important aspect of software maintenance and helps in better planning of development and testing resources. Early detection of change-prone entities is beneficial in terms of both time and money and helps to estimate and meet deadlines reliably. Co-change prediction identifies the affected entities when implementing a change in the software system. Recent researches recommend the use of revision history for the identification of co-changed artifacts. However, very few studies are available for investigation of the effect of history size and age on prediction results. This manuscript studies the effect of age of change history on co-change prediction results in software applications by varying the weightage of change commits with time. ROC analysis is done to study the accuracy of the proposed approach, and the results indicate that the older change commits have lower significance in deriving the changeability pattern. The derived change impact set will be useful for software practitioners in change implementation and selective regression testing.\",\"PeriodicalId\":53605,\"journal\":{\"name\":\"International Journal of Open Source Software and Processes\",\"volume\":\"361 1\",\"pages\":\"16-32\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Open Source Software and Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijossp.2020040102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Open Source Software and Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijossp.2020040102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
Mining Software Repositories for Revision Age-Based Co-Change Probability Prediction
Changeability is an important aspect of software maintenance and helps in better planning of development and testing resources. Early detection of change-prone entities is beneficial in terms of both time and money and helps to estimate and meet deadlines reliably. Co-change prediction identifies the affected entities when implementing a change in the software system. Recent researches recommend the use of revision history for the identification of co-changed artifacts. However, very few studies are available for investigation of the effect of history size and age on prediction results. This manuscript studies the effect of age of change history on co-change prediction results in software applications by varying the weightage of change commits with time. ROC analysis is done to study the accuracy of the proposed approach, and the results indicate that the older change commits have lower significance in deriving the changeability pattern. The derived change impact set will be useful for software practitioners in change implementation and selective regression testing.
期刊介绍:
The International Journal of Open Source Software and Processes (IJOSSP) publishes high-quality peer-reviewed and original research articles on the large field of open source software and processes. This wide area entails many intriguing question and facets, including the special development process performed by a large number of geographically dispersed programmers, community issues like coordination and communication, motivations of the participants, and also economic and legal issues. Beyond this topic, open source software is an example of a highly distributed innovation process led by the users. Therefore, many aspects have relevance beyond the realm of software and its development. In this tradition, IJOSSP also publishes papers on these topics. IJOSSP is a multi-disciplinary outlet, and welcomes submissions from all relevant fields of research and applying a multitude of research approaches.