{"title":"施工中预压引起的路面层超固结应力应变状况","authors":"M. Vamos, J. Szendefy","doi":"10.3311/ppci.22258","DOIUrl":null,"url":null,"abstract":"The stiffness and resilient behavior of soils are essential input properties when designing pavements. There are many material models that take into account the stress dependency of stiffness. In pavements, horizontal stresses generally differ from conventional soils because of the preloading of the pavement during construction. In this research, standardized pavement cross sections were analyzed using finite element software with advanced soil constitutive models, and equations describing their behavior were calibrated with the back-analysis of in-situ and laboratory measurements. The pavement was modelled as comprising 4 layers: asphalt pavement, well graded crushed stone base course, granular subbase course and fine-medium sandy subgrade. The ratio of horizontal and vertical stresses σ3/σ1 and strains ε3/ε1 were investigated and assessed in the function of depth and loading, and recommendations are given for the description of these functions. The recommendations give useful input data for future practical applications such as simplified calculation methods that are capable of determining the permanent settlement beneath flexible pavements without the use of finite element methods.","PeriodicalId":49705,"journal":{"name":"Periodica Polytechnica-Civil Engineering","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Overconsolidated Stress and Strain Condition of Pavement Layers as a Result of Preloading during Construction\",\"authors\":\"M. Vamos, J. Szendefy\",\"doi\":\"10.3311/ppci.22258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The stiffness and resilient behavior of soils are essential input properties when designing pavements. There are many material models that take into account the stress dependency of stiffness. In pavements, horizontal stresses generally differ from conventional soils because of the preloading of the pavement during construction. In this research, standardized pavement cross sections were analyzed using finite element software with advanced soil constitutive models, and equations describing their behavior were calibrated with the back-analysis of in-situ and laboratory measurements. The pavement was modelled as comprising 4 layers: asphalt pavement, well graded crushed stone base course, granular subbase course and fine-medium sandy subgrade. The ratio of horizontal and vertical stresses σ3/σ1 and strains ε3/ε1 were investigated and assessed in the function of depth and loading, and recommendations are given for the description of these functions. The recommendations give useful input data for future practical applications such as simplified calculation methods that are capable of determining the permanent settlement beneath flexible pavements without the use of finite element methods.\",\"PeriodicalId\":49705,\"journal\":{\"name\":\"Periodica Polytechnica-Civil Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodica Polytechnica-Civil Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3311/ppci.22258\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica Polytechnica-Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3311/ppci.22258","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Overconsolidated Stress and Strain Condition of Pavement Layers as a Result of Preloading during Construction
The stiffness and resilient behavior of soils are essential input properties when designing pavements. There are many material models that take into account the stress dependency of stiffness. In pavements, horizontal stresses generally differ from conventional soils because of the preloading of the pavement during construction. In this research, standardized pavement cross sections were analyzed using finite element software with advanced soil constitutive models, and equations describing their behavior were calibrated with the back-analysis of in-situ and laboratory measurements. The pavement was modelled as comprising 4 layers: asphalt pavement, well graded crushed stone base course, granular subbase course and fine-medium sandy subgrade. The ratio of horizontal and vertical stresses σ3/σ1 and strains ε3/ε1 were investigated and assessed in the function of depth and loading, and recommendations are given for the description of these functions. The recommendations give useful input data for future practical applications such as simplified calculation methods that are capable of determining the permanent settlement beneath flexible pavements without the use of finite element methods.
期刊介绍:
Periodica Polytechnica Civil Engineering is a peer reviewed scientific journal published by the Faculty of Civil Engineering of the Budapest University of Technology and Economics. It was founded in 1957. Publication frequency: quarterly.
Periodica Polytechnica Civil Engineering publishes both research and application oriented papers, in the area of civil engineering.
The main scope of the journal is to publish original research articles in the wide field of civil engineering, including geodesy and surveying, construction materials and engineering geology, photogrammetry and geoinformatics, geotechnics, structural engineering, architectural engineering, structural mechanics, highway and railway engineering, hydraulic and water resources engineering, sanitary and environmental engineering, engineering optimisation and history of civil engineering. The journal is abstracted by several international databases, see the main page.