{"title":"Volterra型非线性随机积分方程的Ulam-Hyers-Rassias稳定性","authors":"Ngo Phuoc Nguyen Ngoc","doi":"10.7153/DEA-09-15","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to give some Ulam-Hyers-Rassias stability results for Volterratype stochastic integral equations. The argument makes use of Gronwall lemma and Banach’s fixed point theorem. Mathematics subject classification (2010): 60H20, 34K20, 26D10, 46C05.","PeriodicalId":11162,"journal":{"name":"Differential Equations and Applications","volume":"9 1","pages":"183-193"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Ulam-Hyers-Rassias stability of a nonlinear stochastic integral equation of Volterra type\",\"authors\":\"Ngo Phuoc Nguyen Ngoc\",\"doi\":\"10.7153/DEA-09-15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to give some Ulam-Hyers-Rassias stability results for Volterratype stochastic integral equations. The argument makes use of Gronwall lemma and Banach’s fixed point theorem. Mathematics subject classification (2010): 60H20, 34K20, 26D10, 46C05.\",\"PeriodicalId\":11162,\"journal\":{\"name\":\"Differential Equations and Applications\",\"volume\":\"9 1\",\"pages\":\"183-193\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Equations and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/DEA-09-15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/DEA-09-15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ulam-Hyers-Rassias stability of a nonlinear stochastic integral equation of Volterra type
The aim of this paper is to give some Ulam-Hyers-Rassias stability results for Volterratype stochastic integral equations. The argument makes use of Gronwall lemma and Banach’s fixed point theorem. Mathematics subject classification (2010): 60H20, 34K20, 26D10, 46C05.