混凝动力学方程的解

G.M Hidy, D.K Lilly
{"title":"混凝动力学方程的解","authors":"G.M Hidy,&nbsp;D.K Lilly","doi":"10.1016/0095-8522(65)90059-0","DOIUrl":null,"url":null,"abstract":"<div><p>The theory for the kinetics of coagulation of particles in Brownian motion is reviewed briefly. The relationship between the classical solution of Smoluchowski and the similarity solution to the kinetic equation is discussed. When the classical result is placed in the form of the similarity solution, a simple exponential expression results. In spite of the theoretical limitations, this expression for Smoluchowski's relation can be used to predict satisfactorily a substantial range of the size distribution which has a similar or a self-preserving form.</p></div>","PeriodicalId":15437,"journal":{"name":"Journal of Colloid Science","volume":"20 8","pages":"Pages 867-874"},"PeriodicalIF":0.0000,"publicationDate":"1965-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0095-8522(65)90059-0","citationCount":"38","resultStr":"{\"title\":\"Solutions to the equations for the kinetics of coagulation\",\"authors\":\"G.M Hidy,&nbsp;D.K Lilly\",\"doi\":\"10.1016/0095-8522(65)90059-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The theory for the kinetics of coagulation of particles in Brownian motion is reviewed briefly. The relationship between the classical solution of Smoluchowski and the similarity solution to the kinetic equation is discussed. When the classical result is placed in the form of the similarity solution, a simple exponential expression results. In spite of the theoretical limitations, this expression for Smoluchowski's relation can be used to predict satisfactorily a substantial range of the size distribution which has a similar or a self-preserving form.</p></div>\",\"PeriodicalId\":15437,\"journal\":{\"name\":\"Journal of Colloid Science\",\"volume\":\"20 8\",\"pages\":\"Pages 867-874\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1965-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0095-8522(65)90059-0\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0095852265900590\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0095852265900590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

简要回顾了布朗运动中粒子凝聚动力学的理论。讨论了smouchowski经典解与动力学方程相似解之间的关系。当将经典结果以相似解的形式表示时,得到一个简单的指数表达式。尽管存在理论上的局限性,但斯摩鲁乔夫斯基关系的这种表达式可以用来令人满意地预测具有相似或自保形式的相当大范围的尺寸分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solutions to the equations for the kinetics of coagulation

The theory for the kinetics of coagulation of particles in Brownian motion is reviewed briefly. The relationship between the classical solution of Smoluchowski and the similarity solution to the kinetic equation is discussed. When the classical result is placed in the form of the similarity solution, a simple exponential expression results. In spite of the theoretical limitations, this expression for Smoluchowski's relation can be used to predict satisfactorily a substantial range of the size distribution which has a similar or a self-preserving form.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信