石油预测中的分布式融合算法研究

Ye Xu, Zhuo Wang, Wen-bo Zhang
{"title":"石油预测中的分布式融合算法研究","authors":"Ye Xu, Zhuo Wang, Wen-bo Zhang","doi":"10.1109/IWISA.2009.5072980","DOIUrl":null,"url":null,"abstract":"Distributed fusion algorithm and its model(DFM) are discussed for oil forecast in this paper. DFM comprises a Global Fusion Center(GFC) and several Local Fusion Units(LFU) tightly connecting with each other. LFU performs fusion through two steps: the feature-level fusion that analyzes qualitative data through classifying analysis method and extracts quantitative data through BP Neural Network method; and the decision-level fusion that conducts decision-level analysis on the results of feature-level fusion through Bayesian Network. GFC makes the final decision on the LFU results. Experiments proves that DFM is efficient and acceptable since it decreases global complexity by separating one whole fusion tasks into several local fusion ones. Keywords-Information Fusion; Distributed fusion","PeriodicalId":6327,"journal":{"name":"2009 International Workshop on Intelligent Systems and Applications","volume":"357 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On a Distributed Fusion Algorithm in Oil Forecast\",\"authors\":\"Ye Xu, Zhuo Wang, Wen-bo Zhang\",\"doi\":\"10.1109/IWISA.2009.5072980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distributed fusion algorithm and its model(DFM) are discussed for oil forecast in this paper. DFM comprises a Global Fusion Center(GFC) and several Local Fusion Units(LFU) tightly connecting with each other. LFU performs fusion through two steps: the feature-level fusion that analyzes qualitative data through classifying analysis method and extracts quantitative data through BP Neural Network method; and the decision-level fusion that conducts decision-level analysis on the results of feature-level fusion through Bayesian Network. GFC makes the final decision on the LFU results. Experiments proves that DFM is efficient and acceptable since it decreases global complexity by separating one whole fusion tasks into several local fusion ones. Keywords-Information Fusion; Distributed fusion\",\"PeriodicalId\":6327,\"journal\":{\"name\":\"2009 International Workshop on Intelligent Systems and Applications\",\"volume\":\"357 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Workshop on Intelligent Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWISA.2009.5072980\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Workshop on Intelligent Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWISA.2009.5072980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

讨论了石油预测中的分布式融合算法及其模型(DFM)。DFM由一个全局融合中心(GFC)和多个相互紧密连接的局部融合单元(LFU)组成。LFU通过两步进行融合:特征级融合,通过分类分析方法分析定性数据,通过BP神经网络方法提取定量数据;决策级融合,通过贝叶斯网络对特征级融合结果进行决策级分析。GFC对LFU成绩做出最终决定。实验证明,DFM通过将一个完整的融合任务分解成若干个局部融合任务来降低全局复杂度,是一种有效的融合算法。Keywords-Information融合;分布式融合
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a Distributed Fusion Algorithm in Oil Forecast
Distributed fusion algorithm and its model(DFM) are discussed for oil forecast in this paper. DFM comprises a Global Fusion Center(GFC) and several Local Fusion Units(LFU) tightly connecting with each other. LFU performs fusion through two steps: the feature-level fusion that analyzes qualitative data through classifying analysis method and extracts quantitative data through BP Neural Network method; and the decision-level fusion that conducts decision-level analysis on the results of feature-level fusion through Bayesian Network. GFC makes the final decision on the LFU results. Experiments proves that DFM is efficient and acceptable since it decreases global complexity by separating one whole fusion tasks into several local fusion ones. Keywords-Information Fusion; Distributed fusion
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信